

Cross-Calibration of GRID via Correlative Spectral Analysis of GRBs

Zirui Yang^{1,2}, Xiaofan Pan^{1,2} and Ming Zeng^{1,2}

On behalf of the GRID collaboration

¹Department of Engineering Physics, Tsinghua University, Beijing, China

²Key Laboratory of Particle and Radiation Imaging (Tsinghua University), Ministry of Education, Beijing, China

2025.05.12 @ 17th IACHEC meeting

yzr23@mails.tsinghua.edu.cn pxf21@mails.tsinghua.edu.cn zengming@tsinghua.edu.cn

Introduction

Gamma Ray Integrated Detectors (GRID)

NASA: Gamma-Ray Burst(GRB) and its lightcurve

Joint, multi-messenger detection of GW170817 and GRB 170817A^[1]

- Scientific Objective: To search for GRBs associated with gravitational waves or Fast Radio Bursts (FRBs).
- Technical Approach: Using compact space gamma-ray detectors onboard nanosatellites and multi-satellite networking for constellation ^[2].

GRID-02 installed on the NanoSat

The need for Cross-calibration of GRID

• GRID Constellation's Milestone^[3]

- 12 detectors deployed across nanosatellites
- Enables continuous, all-sky GRB monitoring

GRID-ID	Launch Date	Ownership	Spacetrack catalog No.
GRID-01	2018/10/29	THU	43663
GRID-02	2020/11/06	THU	46838
GRID-03B	2022/03/11	THU	51830
GRID-04	2022/03/11	THU	51830
GRID-05B	2023/01/15	THU	55254
GRID-06B	2023/01/15	NJU&SCU	55252
GRID-07	2023/01/15	BNU	55261
GRID-08B	2023/01/15	NJU&SCU	55261
GRID-10B	2024/06/22	THU&SCU	60088
GRID-11B	2024/11/11	THU&SCU	61897
GRID-12B	2024/11/27	THU	62112
GRID-13B	2024/11/27	THU	62111

THU: Tsinghua University NJU: Nanjing University SCU: Sichuan University BNU: Beijing Normal University

The need for Cross-calibration of GRID

GRID Constellation's Milestone^[3]

- 12 detectors deployed across nanosatellites
- Enables continuous, all-sky GRB monitoring

Why Cross-Calibration Matters

- Ensures detector uniformity for reliable multi-detector data fusion
- Validates overall constellation performance

Essential for GRB Localization

- Methods like flux modulation and arrival-time triangulation rely on calibration accuracy
- Misalignment in detector responses will reduce localization precision

GRID-ID	Launch Date	Ownership	Spacetrack catalog No.
GRID-01	2018/10/29	THU	43663
GRID-02	2020/11/06	THU	46838
GRID-03B	2022/03/11	THU	51830
GRID-04	2022/03/11	THU	51830
GRID-05B	2023/01/15	THU	55254
GRID-06B	2023/01/15	NJU&SCU	55252
GRID-07	2023/01/15	BNU	55261
GRID-08B	2023/01/15	NJU&SCU	55261
GRID-10B	2024/06/22	THU&SCU	60088
GRID-11B	2024/11/11	THU&SCU	61897
GRID-12B	2024/11/27	THU	62112
GRID-13B	2024/11/27	THU	62111

THU: Tsinghua University NJU: Nanjing University SCU: Sichuan University BNU: Beijing Normal University

Unique Challenges in Constellation Missions

Phased Development and Deployment over 6 Years (2018–2024)

introduce variations in:

- Design and build processes
- Personnel and calibration teams
- Material and electronics differences
- Platform Differences
 - Satellite structures can affect detector response matrix (DRM)

Parts of GRID payloads onboard nanosatellites

Unique Challenges in Constellation Missions

Phased Development and Deployment over 6 Years (2018–2024)

introduce variations in:

- Design and build processes
- Personnel and calibration teams
- Material and electronics differences
- Platform Differences
 - Satellite structures can affect detector response matrix (DRM)
- Effects of Radiation Damage on SiPMs^[4]
 - Varying damage across payloads
 - Increase in dark count rate and impact on energy threshold
 - Effect on the DRM needs to be tracked and corrected

Parts of GRID payloads onboard nanosatellites

Instrument and DRMs

Compact Detector Design

General Specifications of GRID detectors

items	value
Size	< 0.5U (9.4×9.4×5 cm³)
Weight	~ 780 g
GAGG unit	$3.8 \times 3.8 \times 1$ cm ³
Detection area	~ 58 cm ²
Field of view	2π
Energy range	10 keV to 2 MeV

IDRM Construction Workflow

The DRM links true photon energy to detected signal.

It's a matrix: each element shows the chance that a photon of energy *i* is recorded in channel *j*.

Ground calibration^[6] using radioactive sources and X-ray beam tests to measure gain, energy resolution and angular response

DRM Construction Workflow

The DRM links true photon energy to detected signal.

10

It's a matrix: each element shows the chance that a photon of energy *i* is recorded in channel *j*.

hannel 0

Ground calibration^[6] using radioactive sources and X-ray beam tests to measure gain, energy resolution and angular response

Geant4 simulations^[7] to model energy deposition at various incident directions & energies

Measured energy [keV]

Evolution of DRMs due to SiPM Radiation Damage

Methodology of Cross-calibration

GRID and Fermi-GBM

Data Preprocessing

- GRID Data Tools and XSPEC Version 12.13.0c
- Unified file formats, units, metadata
- Background subtraction:
 - Polynomial fit (smooth changes)
 - Bayesian blocks (abrupt changes)
- T_{90} : Time window for 5%–95% of total fluence
- Captures core emission of the GRB
- Extract time and energy info within T_{90}

Data Preprocessing for GRB 230812B^[9]

Fitting Strategy

- Individual fits: GRID & GBM
- Joint fit: shared shape, separate normalizations
- Forward-folding used instead of direct unfolding

 $N_{\text{det}}(E_{\text{obs}}) = \sum_{i} R(E_{\text{obs}}, E_i) \cdot N_{\text{true}}(E_i)$

Fitting Strategy

- Individual fits: GRID & GBM
- Joint fit: shared shape, separate normalizations
- Forward-folding used instead of direct unfolding

 $N_{\text{det}}(E_{\text{obs}}) = \sum_{i} R(E_{\text{obs}}, E_i) \cdot N_{\text{true}}(E_i)$

Spectral models used in this work:

Power Law:

$$N(E) = K \cdot E^{-\alpha}$$

Three-Tier Spectral Analysis

$$\chi^2$$
 Statistics
Individual Fitting
GRID
Individual Fitting
Fermi-GBM
Joint Fitting
Linked Spectral Parameters
(Photon Index, Cutoff Energy, etc.)

Band Function:

$$N(E) = \begin{cases} K \cdot E^{\alpha} \cdot e^{-\frac{E}{E_0}}, & E \leq E_{\text{peak}} \\ K \cdot \left(E_{\text{peak}}\right)^{\alpha - \beta} \cdot E^{\beta} \cdot e^{(\beta - \alpha) \cdot \frac{E_{\text{peak}}}{E_0}}, & E > E_{\text{peak}} \end{cases}$$
Cut-Off Power Law:

$$N(E) = K \cdot E^{-\alpha} \cdot e^{-\frac{E}{E_{\text{cut}}}}$$

GRB analysis and result

Data Selection & Processing

•Event Selection:

- GRID: Prioritize high-flux events with small incident angles
- For Fermi-GBM: Select 2 Nal detectors per event
 Choose based on smallest angular offset and
 unobstructed view
- GRBs for Joint Analysis^[10]:
 - GRB 210121A, GRB 230827A, GRB 231215A, GRB 240229A
 - Spectral analysis over GRID's T_{90} intervals (30–1200 keV)

23 GRBs from 500 hours observation of GRID-02, 03B, 04, 07, and 08B

Analysis Result: GRB 210121A

GRID-02 and Fermi-GBM light curves for GRB 210121A, with T0 = 18:41:49.0 UT.

The vertical red dashed lines indicate the joint fit interval.

Energy spectrum fitting with residuals

Energy (keV)

200

50

100

1000

500

Analysis Result: GRB 210121A

Fitting parameters for GRB 210121A (1 σ uncertainty) BIC = fitsta + log d. o. f.

Model	Detector	Index(α)	$Index(\beta)$	E_{cut} (E_{peak} for Band)	$\frac{\chi^2}{d.o.f.}$	BIC
PL	Combined	$1.00\substack{+0.01\\-0.01}$	١	١	$\frac{597.09}{364} = 1.640$	620.68
	GRID-02	$1.08\substack{+0.03\\-0.03}$	λ.	١	$\frac{211.86}{155} = 1.367$	221.95
	GBM n0, n3	$0.99\substack{+0.01\\-0.01}$	١	١	$\frac{369.34}{208} = 1.776$	385.35
CPL	Combined	$0.56\substack{+0.03\\-0.03}$	٨	$743.6_{-68.4}^{+80.3}$	$\frac{433.88}{363} = 1.195$	463.35
	GRID-02	$0.58\substack{+0.08 \\ -0.09}$	λ.	$716.2^{+166.5}_{-120.5}$	$\frac{165.31}{156} = 1.060$	180.45
	GBM n0, n3	$0.58\substack{+0.04 \\ -0.04}$	١	$787.9^{+111.1}_{-90.3}$	$\frac{272.39}{207} = 1.316$	299.06
BAND	Combined	$-0.53\substack{+0.04\\-0.04}$	$-1.58\substack{+0.13\\-0.25}$	$578.4_{-84.1}^{+98.4}$	$\frac{435.78}{362} = 1.204$	471.13
	GRID-02	$-0.46\substack{+0.18\\-0.12}$	$-1.59\substack{+0.19\\-0.41}$	$468.2^{+185.0}_{-164.0}$	$\frac{163.50}{153} = 1.069$	183.62
	GBM n0, n3	$-0.56\substack{+0.05\\-0.05}$	$-1.57\substack{+0.17\\-0.51}$	$636.1^{+143.1}_{-118.1}$	$\frac{270.66}{206} = 1.314$	297.30

Boldface indicates the BIC value of the best joint fitting among all used models

Analysis Result: GRB 230827A

GRID-04 and Fermi-GBM light curves for GRB 230827A, with T0 = 18:17:53.0 UT.

The vertical red dashed lines indicate the joint fit interval.

Energy spectrum fitting with residuals

Energy (keV)

Analysis Result: GRB 230827A

Fitting parameters for GRB 230827A (1o uncertainty)

 $BIC = fitsta + \log d. o. f.$

Model	Detector	Index(α)	$Index(\beta)$	E_{cut} (E_{peak} for Band)	$\frac{\chi^2}{d.o.f.}$	BIC
PL	Combined	$1.31\substack{+0.01\\-0.01}$	١	١	$\frac{477.68}{365} = 1.309$	501.28
	GRID-04	$1.66^{+0.07}_{-0.07}$	١	١	$\frac{135.64}{127} = 1.068$	145.33
	GBM n8, nb	$1.30\substack{+0.02 \\ -0.02}$	١	١	$\frac{309.94}{237} = 1.308$	326.34
CPL	Combined	$0.91\substack{+0.05 \\ -0.05}$	١	$391.9^{+58.1}_{-47.6}$	$\frac{345.38}{364} = 0.949$	374.87
	GRID-04	$0.88\substack{+0.16 \\ -0.36}$	١	$321.1^{+236.0}_{-112.4}$	$\frac{126.25}{126} = 1.002$	140.76
	GBM n8, nb	$0.93\substack{+0.05 \\ -0.05}$	١	$428.8_{-61.3}^{+78.4}$	$\frac{217.74}{236} = 0.923$	239.60
BAND	Combined	\	١	١	١	١
	GRID-04	\	١	١	١	١
	GBM n8, nb	\	١	١	١	١

Boldface indicates the BIC value of the best joint fitting among all used models

Analysis Result: GRB 231215A

GRID-04 and Fermi-GBM light curves for GRB 231215A, with T0 = 9:47:19.0 UT.

The vertical red dashed lines indicate the joint fit interval.

24

Energy spectrum fitting with residuals

Analysis Result: GRB 231215A

Fitting parameters for GRB 231215A (1 σ uncertainty) BIC = fitsta + log d. o. f.

Model	Detector	$Index(\alpha)$	$Index(\beta)$	E_{cut} (E_{peak} for Band)	$\frac{\chi^2}{d.o.f.}$	BIC
PL	Combined	$1.21^{+0.01}_{-0.01}$	١	1	$\frac{1140.91}{469} = 2.433$	1165.51
	GRID-04	$1.46^{+0.02}_{-0.02}$	١	١	$\frac{374.93}{262} = 1.431$	386.07
	GBM n8, nb	$1.18^{+0.01}_{-0.01}$	١	١	$\frac{622.54}{206} = 3.022$	638.52
CPL	Combined	$0.57^{+0.03}_{-0.03}$	λ	$424.9^{+26.6}_{-24.5}$	$\frac{511.92}{468} = 1.094$	542.66
	GRID-04	$0.59^{+0.11}_{-0.11}$	١	$381.0^{+63.2}_{-51.6}$	$\frac{270.16}{261} = 1.035$	286.85
	GBM n8, nb	$0.60^{+0.04}_{-0.04}$	X.	$467.3^{+111.1}_{-90.3}$	$\frac{233.76}{205} = 1.140$	255.05
BAND	Combined	λ	١.	١	λ	\
	GRID-04	1	١	٨	/	\
	GBM n8, nb	$-0.53^{+0.05}_{-0.05}$	$-1.94^{+0.13}_{-0.20}$	$364.1^{+45.6}_{-38.8}$	$\frac{256.44}{204} = 1.127$	229.85

Boldface indicates the BIC value of the best joint fitting among all used models

Analysis Result: GRB 240229A

The vertical red dashed lines indicate the joint fit interval.

Energy spectrum fitting with residuals

Analysis Result: GRB 240229A

Fitting parameters for GRB 240229A (1 σ uncertainty) BIC = fitsta + log d. o. f.

Model	Detector	$Index(\alpha)$	$Index(\beta)$	E_{cut} (E_{peak} for Band)	$\frac{\chi^2}{d.o.f.}$	BIC
PL	Combined	$1.34^{+0.01}_{-0.01}$	١.	١	$\frac{471.30}{370} = 1.274$	494.95
	GRID-04	$1.55^{+0.07}_{-0.07}$	\	1	$\frac{126.68}{133} = 0.952$	136.46
	GBM n9, na	$1.34^{+0.01}_{-0.01}$	١	١.	$\frac{334.45}{236} = 1.417$	350.84
CPL	Combined	$0.97^{+0.05}_{-0.05}$	١.	$445.0^{+75.0}_{-59.9}$	$\frac{366.86}{369} = 0.994$	396.41
	GRID-04	$0.97^{+0.29}_{-0.34}$	\	$413.0^{+499.8}_{-172.8}$	$\frac{121.16}{132} = 0.918$	135.81
	GBM n9, na	$0.98^{+0.02}_{-0.02}$	λ	455.3 ^{+84.8} -66.2	$\frac{245.54}{235} = 1.045$	267.38
BAND	Combined	١	١.	١	١	١
	GRID-04	١.	\	1	٨	1
	GBM n9, na	$-0.83^{+0.09}_{-0.09}$	$-1.71^{+0.08}_{-0.17}$	234.8 ^{+89.1} -54.2	$\frac{241.89}{234} = 1.034$	269.17

Boldface indicates the BIC value of the best joint fitting among all used models

Conclusion

Conclusion & Outlook

- Cross-calibration between the GRID detectors and Fermi-GBM was performed through joint spectral analysis.
- The excellent agreement between the instruments validates the accuracy of GRID's DRMs and the reliability of its scientific data.
- In our cross-calibration, the radiation damage of SiPM has insignificant influence on the DRM. However it is an in-orbit issue worthy of discussion.
- Accurate cross-calibration between detectors is particularly relevant in source localization methods
- For nanosatellite constellations like GRID, cross-calibration through orbital observations involving multiple distributed detector payloads is a crucial tool for ensuring uniformity and verifying overall performance of such systems.

References

[1] B. P. Abbott *et al.*, "Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A," *The Astrophysical Journal*, vol. 848, no. 2, p. L13, Oct. 2017, doi:10.3847/2041-8213/aa920c.

[2] J. Wen et al., "GRID: a student project to monitor the transient gamma-ray sky in the multi-messenger astronomy era," *Experimental Astronomy*, vol. 48, no. 1, pp. 77–95, Aug. 2019, doi:10.1007/s10686-019-09636-w.

[3] Z. Yang, L. Li, X. Zheng, X. Pan, and M. Zeng, "Current status and recent scientific results of GRID: a student-driven NanoSat constellation for GRB observation," pp. 1–1, Sep. 2024, doi:10.1109/nss/mic/rtsd57108.2024.10655487.

[4] X. Zheng et al., "In-orbit radiation damage characterization of SiPMs in the GRID-02 CubeSat detector," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 1044, p. 167510, Sep. 2022, doi:10.1016/j.nima.2022.167510.

[5] J.-X. Wen *et al.*, "Compact CubeSat Gamma-ray detector for GRID mission," *Nuclear Science and Techniques*, vol. 32, no. 9, Sep. 2021, doi:10.1007/s41365-021-00937-4.

[6] H. Gao et al., "On-ground calibrations of the GRID-02 gamma-ray detector," *Experimental Astronomy*, vol. 53, no. 1, pp. 103–116, Dec. 2021, doi:10.1007/s10686-021-09819-4.

[7] Q. Liu *et al.*, "Monte Carlo simulation of angular response of GRID detectors for GRID mission," *Journal of Instrumentation*, vol. 20, no. 03, pp. P03017–P03017, Mar. 2025, doi:10.1088/1748-0221/20/03/p03017.

[8] C. Meegan *et al.*, "THE *FERMI*GAMMA-RAY BURST MONITOR," *The Astrophysical Journal*, vol. 702, no. 1, pp. 791–804, Aug. 2009, doi:10.1088/0004-637x/702/1/791.

[9] C.-Y. Wang *et al.*, "Bridging the Gap: GRB 230812B—A 3 s Supernova-associated Burst Detected by the GRID Mission," *The Astrophysical Journal*, vol. 980, no. 2, pp. 212–212, Feb. 2025, doi:10.3847/1538-4357/ada934.

[10] Z. Yang *et al.*, "Cross-calibration of GRID via correlative spectral analysis of GRBs," *Experimental Astronomy*, vol. 59, no. 3, May 2025, doi:10.1007/s10686-025-10002-2.

Thank you for your attention!

Zirui Yang^{1,2}, Xiaofan Pan^{1,2} and Ming Zeng^{1,2}

On behalf of the GRID collaboration

¹Department of Engineering Physics, Tsinghua University, Beijing, China ²Key Laboratory of Particle and Radiation Imaging (Tsinghua University), Ministry of Education, Beijing, China

2025.05.12 @ 17th IACHEC meeting

vzr23@mails.tsinghua.edu.cn pxf21@mails.tsinghua.edu.cn zengming@tsinghua.edu.cn