

In-orbit timing calibration of the Resolve microcalorimeter spectrometer on the XRISM

Yugo Motogami^a

Makoto Sawada^{b,c}, Megan E. Eckart ^d, Teruaki Enoto^e, Yoshitaka Ishisaki^d, Caroline A. Kilbourne^g, Michael Loewensteinf^{g,h,i}, Eric D. Miller^j, Frederick S. Porter^g, Katja Pottschmidt^{g,k,i}, Megumi Shidatsu^l, Russel F. Shipman^m, Takaaki Tanakaⁿ, Yukikatsu Terada^a, Masahiro Tsujimoto^p, Tahir Yaqoob^{g,j,i}, Tomokage Yoneyama^q, Chulsoo Kang^l, Tsuyoshi Miyazakiⁿ, Yuto Mochizuki^{o,q}, Taichi Nakamoto^l, Yuuki Niida^l, Tomoki Omama^o, Minami Sakama^a, Takumi Shioiri^a, Toshihiro Takagi^l and XRISM SOT/CallP team

a Saitama U., b Rikkyo U., c RIKEN, d LLNL / SSI, e Kyoto U., f Tokyo Met. U., g NASA GSFC, h U. Maryland, i CRESST / NASA GSFC, j MIT, k CSST U. Maryland, I Ehime U., m SRON, n Konan U., o ISAS / JAXA, p Chuo U., q Tokyo U.

Introduction1. XRISM/Resolve

XRISM				
Launch Date	September 7, 2023 (JST)			
Lead Agency	JAXA, NASA			
Instruments	Resolve (Micro-calorimeter), Xtend (CCD)			
Energy band	0.3(1.7) – 12 keV (Resolve) 0.4 – 13 keV (Xtend)			
Timing Accuracy Requirement (Resolve)	$\leq 1.0 \text{ ms} (1\sigma)$ To meet the requirements of millisecond-scale physics			

Fig.1:XRISM Overview Diagram Credit: JAXA/XRISM Project (https://xrism.isas.jaxa.jp/)

Table.1:XRISM status Terada et al., 2025, Tashiro et al., 2025

Main topic: the in-orbit timing accuracy verification and calibration of Resolve

 \rightarrow H, M grades achieve significantly better timing accuracy than L-grade

Introduction3. XRISM/Resolve timing system

Orange: Resolve-related errors Gray: other sources

In the left diagram, timing errors occur at each stage from GPSR to trigger time determination

♦ JATIS Paper

- 1. Terada et al., 2025: $A \rightarrow E-1$, G
- Shidatsu et al., 2025: B (GPS Unsynchronized Mode)
- 3. Sawada et al., 2025: E-2 \rightarrow F-3, H

This presentation focuses on the in-orbit verification and calibration

Summary of Observations for In-flight Timing Calibrations

Group	Observatory	Obs. ID	R.A. (°)	Dec. (°)	Start time	Exposure (ks)
1 2024/3	XRSIM	100006020	83.647901	22.027340	2024/03/19 04:18:52	17.89
		100006030	83.620658	22.028023	12:18:29	13.53
		100006040	83.648191	22.001824	18:42:12	15.33
		100006050	83.620297	22.002507	2024/03/20 04:38:33	13.10
	NICER	7013010101	83.632640	22.015160	2024/03/19 03:41:09	1.23
2 2024/10	XRSIM	101000010	83.647508	22.027158	2024/10/06 00:01:59	8.63
		101001010	83.617721	22.027249	04:42:40	9.80
		101002010	83.645212	22.001834	09:29:49	10.34
		101003010	83.617980	22.002103	14:16:58	16.39
	NICER	7013010106	83.633420	22.014160	00:41:39	5.77

Simultaneous observations with NICER twice:

Table 2:Observation log of the Crab pulsar

during the Performance Verification phase and the Guest Observation phase. 5

Data analyses1. Calculation Pulse Profiles

Phase definition: $\phi = \left(\nu(t-t_0) + \frac{1}{2}\dot{\nu}(t-t_0)^2\right)$

Fig.5: Crab pulse profiles (XRSIM using H and Mp events) Sawada et al., 2025

t: the calibrated barycenter time of an X-ray event t_0 : the radio phase origin v: frequency of the radio pulse

 $\dot{\nu}$: Time derivative of ν

Observatory	MJD	ν	ν̈́	
Jodrell Bank Telescope	60384	29.56300275	-3.66709	
XRISM & NICER	60388 - 60389	—	—	
JBT	60415	29.56202062	-3.66668	
JBT	60568	29.55717451	-3.66530	
XRISM & NICER	60589	—	—	
JBT	60598	29.55622451	-3.66489	

XRISM/NICER ephemeris were determined by the interpolation between two near measurements by Jodrell Bank ephemeris

Data analyses2. Determination of X-ray Peak Phase

Fig.5: Crab pulse profiles (XRSIM using H and Mp events) Sawada et al., 2025 Derive pulse peak via fitting with Nelson's formula

$$L(\phi) = N \frac{1 + a(\phi - \phi_0) + b(\phi - \phi_0)^2}{1 + c(\phi - \phi_0) + d(\phi - \phi_0)^2} \exp\left(-f(\phi - \phi_0)^2\right) + l,$$

 $L(\phi)$: the X-ray counts at phase ϕ

 ϕ_0 : the peak phase

N: the peak height

l: the off-pulse intensity level

a, *b*, *c*, *d*, *f* : the shape coefficients (Fixed to Ge+16 value)

fitting range : $\phi = -0.075 to + 0.0355$ Statistics: C-statistics

Numerical comparison of φ₀ values
between NICER and XRISM
→ In-orbit verification and calibration of timing parameters measured on the ground 7

Result1. Timing Offset Relative to NICER for H+Mp

1 The offset from the radio pulse peak

The offset from the radio pulse peak changes by $\sim 200 \ \mu s$ between the two observations.

- The uncertainty on the radio ephemeris is ${\sim}100~\mu s$
 - The remaining difference may be due to fitting method dependence, but the exact cause is still unclear.

② Offset relative to NICER (comparison in the X-ray band)

Consistent offset across observation epochs

→ Successful timing parameters determined by ground calibration

Result2. Grade Dependence on timing offset

Result after applying ground calibration

We combined data from two calibration epochs to reduce statistical error

Summary of result

✓ H: ~20 µs

(comparable to the statistical error in the absolute timing calibration on the ground)

✓ The other grades:
$$-50 to + 80 \mu s$$

This grade variance can be recalibrated in the CALDB

Result3. Pixel Dependence on timing offset

Further classification by pixel

Result4. After Applying In-orbit Parameters

Error item	ID	XRISM		
		Η	Мр	Lp
Cat. I	A through F-2 ¹	15	15	38
Cat. II	F-3 (relative, grade)		7	8
	F-3 (relative, pixel) ²	46	71	89
	F-3 (relative, DERIV_MAX) ³	39	69	77
	F-3 (absolute) ⁴			
	G′ ⁵	15	16	21
Cat. III	H^6	7		
Total ⁷		130	200	250

Table 3:Summary of errors Sawada et al., 2025 Cat. I errors: Terada et al. 2025

Reduced grade/pixel variations

Total timing error $\ll 1~ms$ requirement

Based on new parameters above, new CALDB in preparation.

summary

We investigated the timing offset relative to NICER, using the timing parameters that were determined through ground calibration.

We investigated the timing offset dependence on event grade and pixel.

→In M and L grade events, we observed slight pixel-dependent variance in the timing offset.

◆ Based on the measured offsets, we determined the in-orbit timing correction parameters.
As a result of the calibration
→ The timing error was reduced to ~200 µs, comfortably meeting the 1 ms requirement.

backup

