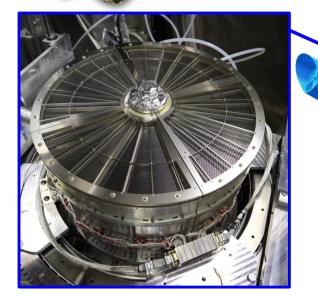
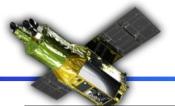
Improvement of chargetransfer efficiency of XRISM/Xtend CCDs due to un unintentional warming

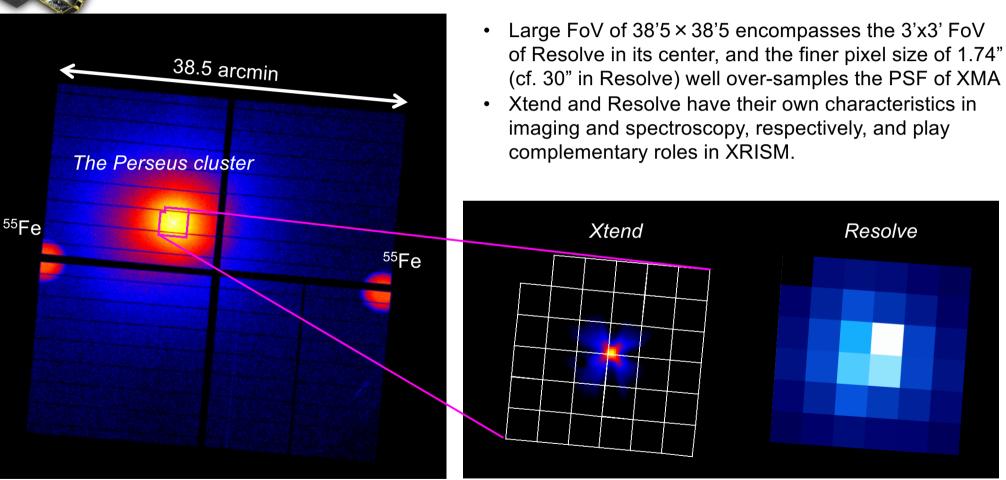
> Koji Mori (University of Miyazaki, Japan) on behalf of the XRISM/Xtend team mori@astro.miyazaki-u.ac.jp

> > © JAXA

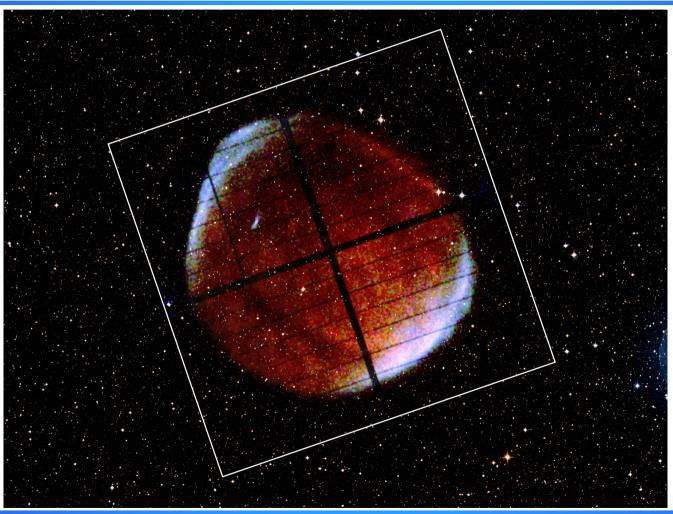

Abstract


- In November 2024, we encountered an unexpected malfunction of the FPGA in the on-board electronics installed in XRISM/Xtend, likely due to a single event effect
- After the recovery, we recognized a discontinuous rise in the time history of 55Fe spectrum peak. We conclude that this rise is due to the improvement of charge-transfer efficiency.
- During the recovery operation, we stopped the cooler so that the temperatures of CCDs increased up to 0 °C from the operation temperature of −110 °C. Although the time period during which the CCDs were not at the nominal operation temperature was relatively short (~a day), it is likely that the unintentional warming of CCDs worked as an annealing in the right direction.

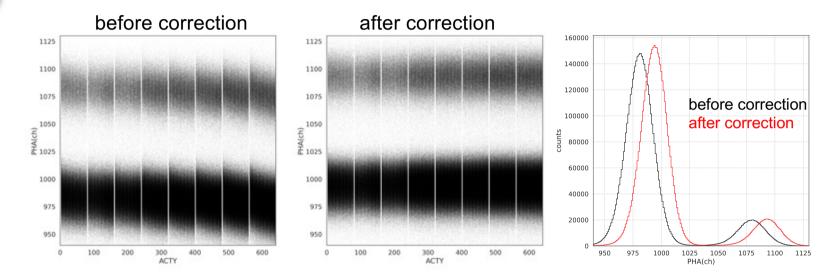
Xtend on XRISM

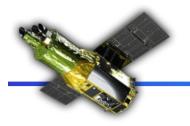


- Xtend (soft X-ray imaging telescope)
 = XMA (X-ray Mirror Assembly) + SXI (Soft X-ray Imager; CCD camera)
- XMA is an Aluminum thin-foil-nested conically approximated Wolter-I optics. Both Xtend and Resolve have an XMA with identical design.
- Xtend and Resolve observe the same sky direction and covering almost the same energy band

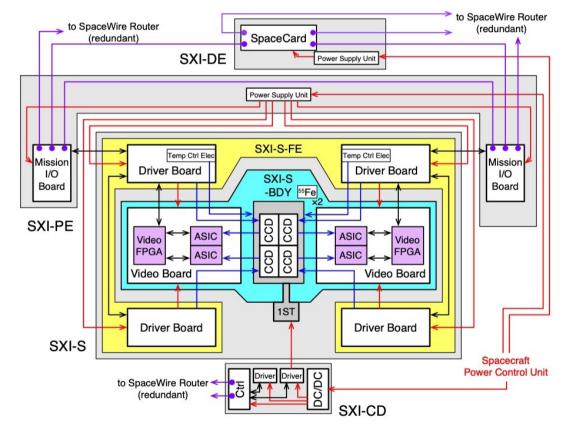


Characteristics of Xtend



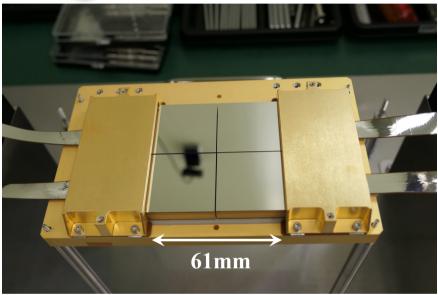

IACHEC2025, May 11-15 2025

Spaced charge injection



- ``Spaced charge injection'' technique is applied to compensate the charge loss due to CTI
- Left and middle figures show ``pulse-height vs row number plot'' made with the data taken in ground where where CCD area was irradiated with an ⁵⁵Fe source
- Because of the SCI technique, the so-called saw-tooth shape appears before the CTI correction and is gone after the CTI correction as is expected in the case without charge loss during transfer
- It is also clear that the CTI correction makes the peak and width of the spectrum higher and narrower, respectively.

Xtend/SXI configuration



- ➤ The CCDs can be cooled down to -120°C using the first-stage Stirling cooler.
- Driving clocks are produced in the Driver Boards and the output signal from CCDs are processed in ASICs inside the Video Boards.
- Extraction of X-ray events from images are performed in the mission I/O Boards (SXI-PE) and SpaceCard (SXI-DE).
- SXI-DE also controls the entire SXI system except for the Stirling cooler, which is operated by the cooler driver, SXI-CD.

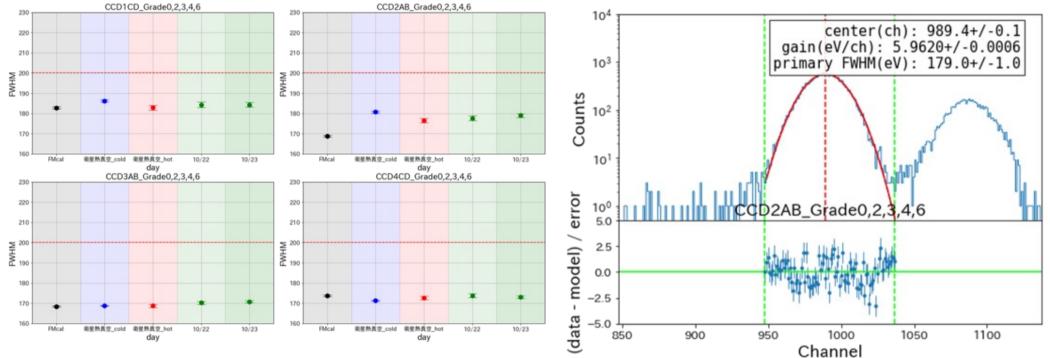
CCDs for Xtend

Specifications and nominal operation parameters of the SXI CCD

CCD Specification	Architecture	Frame transfer		
	Imaging area size	$30.720 \text{ mm} \times 30.720 \text{ mm}$		
	Pixel format (physical/logical)	$1280 \times 1280 / 640 \times 640$		
	Pixel size (physical/logical)	$24\mu m \times 24\mu m / 48\mu m \times 48\mu m$		
	Depletion layer thickness	$200 \ \mu m$		
	Incident surface layer (back side)	100 nm + 100 nm thick Aluminum coat		
	Readout nodes (equipped/used)	4 / 2		
Operation parameters	Frame cycle	4 seconds		
	On-chip binning	2×2		
	Charge injection	every 160 physical rows		

- > We have developed large-size back side illumination type CCD with Hamamatsu Photonics. K.K.
- > Four CCDs abutted in 2×2 array form an effective imaging area of 61mm square.
- Two important updates from ASTRO-H CCDs
 - > Adoption of a notch implant in the charge transfer path as a measure against the increase of the CTI in orbit
 - Doubling aluminum layers (100nm + 100nm) on the incident surface to reduce the number of pinholes found in ASTRO-H CCD and introducing an extra aluminum layer above the depletion layer to decrease the flux of light leaks from the physical edges

Observation modes



Mode	Area	Exposure time	Exposure per frame	Live time fraction*	Purpose	CCD_ID=1 Resolve FOV
Full window	1	3.96 sec	1	0.99	General	CCD_ID=
1/8 window	1/8	0.46 sec	8	0.93	Bright point source	
1/8 window + burst	1/8	0.06 sec	8	0.12	Bright point sources	CCD_ID=3
Full window burst	1	0.06 sec	1	0.015	Crab mode, not for users	CCD_ID=2.

*excluding charge transfer time, during which photons detected are recorded as trailing events

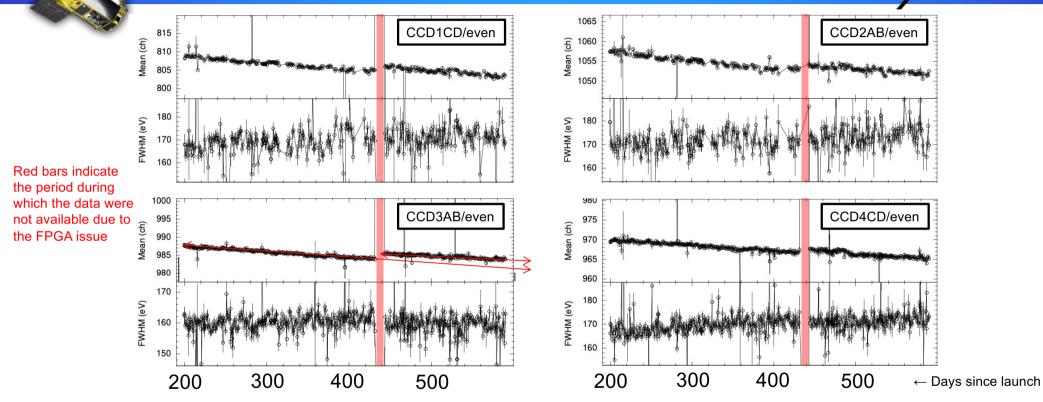
- Frame cycle is regulated by SXI-PE to be 4 sec/frame.
- We prepare window option (1/8 of the chip is readout = 8 exposures per frame) and burst option (shortened exposure time) to decrease the risk of pile-up for bright sources and improve time resolution.
- > Top three modes in the table are open for users
- These modes are for the pair of CCD1 and CCD2. Regardless of the mode for CCD1/2, CCD3/4 is operated with full window mode

Spectroscopic performance just after the launch

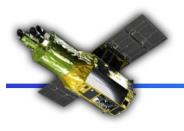
- Fully consistent with ground tests
- The energy resolutions measured at 6 keV were 170-185 eV and satisfied mission requirement (better than 200 eV at 6 keV)
- > These values are obtained from good grade events with all the corrections (e.g., CTI) applied

X-Ray Imagin

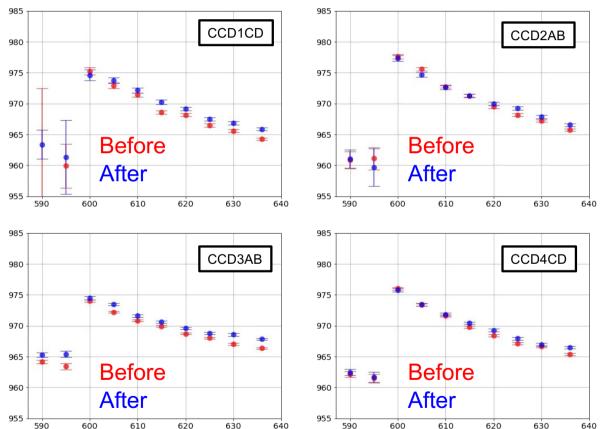
Unexpected malfunction of the FPGA


2024/11/11 09:22 - 11-23 23:40					
Comment:					
Due to this issu recovery plan a					
	uses no effect on the Resolve data. 0) The readout system of CCD3 and CCD4 was reset from 11/22 to 11/23, and recovered at 2024/11/23				
	0) During the affected time (11/11-11/23), timing of SAA-related commands to CCD1, CCD2 were also ence some anomalous events detected for CCD1, CCD2 and their spectroscopic performances may be				
Observation(s)	related to this note:				
,	NGC4395 (not entire but part of the observation is affected)				
- 201132010 / - 201049010 /					
- 201049010 /					
- 201131010 /	-				
- 201015010 /	ABELL754_MAIN				
- 201107010 /	WR140 (not entire but part of the observation is affected)				

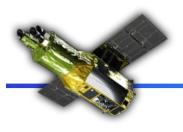
- Xtend operation log
 - open to community to summarize our special operation and/or data requiring special attention for analysis
 - https://xrism.isas.jaxa.jp/resea rch/observers/operation_log/X tend/index.html


- It took about two weeks from the time this issue was recognized until the return to the normal operation
 - HK data analysis, cause investigation with electronics maker, operation planning, mock test with a test bench, and recovery operation

Time history of ⁵⁵Fe peak and width



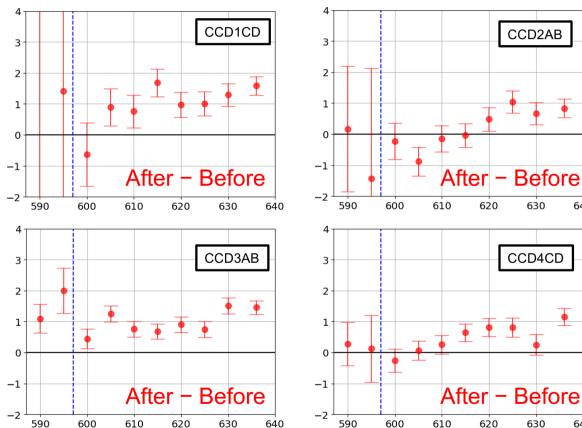
- These values are obtained from Grade 0 events without any correction (from even columns)
- After the recovery operation, we recognized a discontinuous rise in the ⁵⁵Fe peak trend
 - Now we can see a discontinuous fall in the ⁵⁵Fe width trend



Gain shift or improvement of CTI

No CTI correction applied

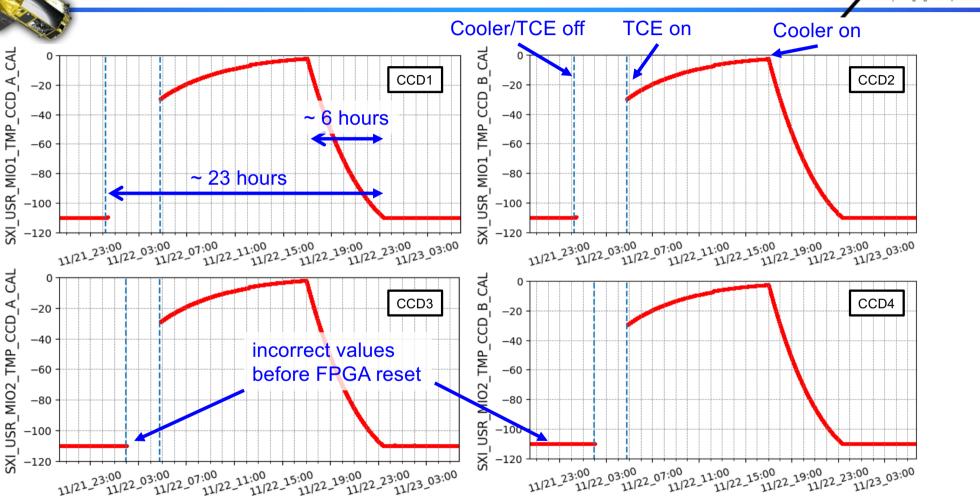
- In the ground tests, an abrupt gain shift was sometimes observed after resetting the system, which was first suspected to be the case for this event
- ``pulse-height vs row number plot" indicates, however, that the cause of this event is not a gain shift but the the improvement of CTI.
 - The effective CTI value at given pixel is greater as the distance from the nearest preceding CI row to the pixel is longer
 - Longer distant pixels show larger rise in pulse-height

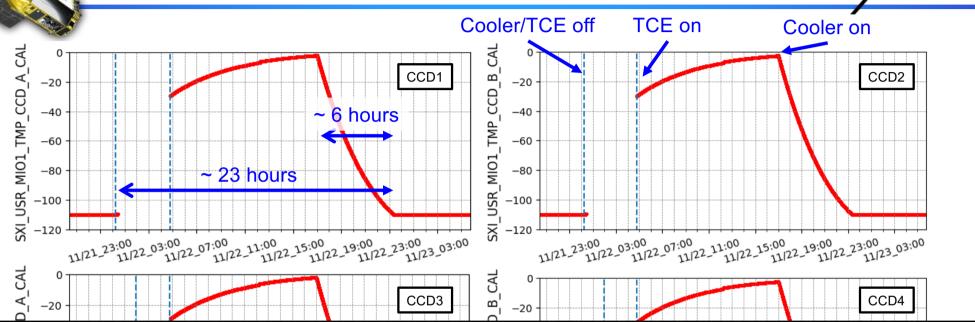


Gain shift or improvement of CTI

640

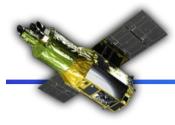
640


No CTI correction applied


- In the ground tests, an abrupt gain shift was sometimes observed after resetting the system, which was first suspected to be the case for this event
- ``pulse-height vs row number plot" indicates, however, that the cause of this event is not a gain shift but the the improvement of
- Roughly speaking, because of this event, CTI improved by ~1 × 10⁻⁶ (<10%)

rise in pulse-height

Time history of CCD temperature


Time history of CCD temperature

- During the recovery operation, we stopped the cooler so that the temperatures of CCDs increased up to 0 °C from the operation temperature of -110 °C.
- Although the time period during which the CCDs were not at the nominal operation temperature was relatively short (~a day), it is likely that the unintentional warming of CCDs worked as an annealing in the right direction.

 $11|21_{23:00}$ $11|22_{11}|2$

11|21 - 23:00 - 03:00 - 07:00 - 11:00 - 15:00 - 19:00 - 23:00 - 03:00 - 11:02 - 11:02 - 11:02 - 11:02 - 23:00 - 03:0

Discussion

- It is generally-known positive practice to warm damaged CCD devices to anneal at least some radiation defects since the HST era
- In the case of Chandra ACIS, however, CTI reversely increased by about 35% after their CCD warming
 - Soon after the damage occurred, the focal plane temperature was elevated to +20–30 °C for 8 hours and then the CCDs were cooled back down to the normal operating temperature, -100°C at that point in the mission (Bautz et al. 2005)
- Any experiences of this kind of ``baking'' for other CCD missions in space, whether intentional or not?