
Cosimo Bambi   Editor

Tutorial Guide 
to X-ray and 
Gamma-ray 
Astronomy
Data Reduction and Analysis



Tutorial Guide to X-ray and Gamma-ray Astronomy



Cosimo Bambi
Editor

Tutorial Guide to X-ray
and Gamma-ray Astronomy
Data Reduction and Analysis

123



Editor
Cosimo Bambi
Department of Physics
Fudan University
Shanghai, China

ISBN 978-981-15-6336-2 ISBN 978-981-15-6337-9 (eBook)
https://doi.org/10.1007/978-981-15-6337-9

© Springer Nature Singapore Pte Ltd. 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, expressed or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with regard
to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

https://doi.org/10.1007/978-981-15-6337-9


Preface

X-ray and c-ray astronomy, namely, the study of astrophysical objects in the X-ray
and c-ray bands, began in the early 1960s and opened a new window for the study
of violent phenomena in the Universe. In the past 20 years, missions like
XMM-Newton, Chandra, NuSTAR, Swift, and Fermi, just to cite some of them, have
provided a large amount of data to study a number of astrophysical systems. For
instance, X-ray and c-ray radiation is emitted by material orbiting in the strong
gravity region of black holes and can be used to study the physical properties
of these objects as well as their astrophysical environment. The next generation of
satellites, like eXTP and ATHENA, promises to provide unprecedented high-quality
data to investigate a number of open questions about the physics and the astro-
physics of the Universe.

Despite the importance of X-ray and c-ray astronomy in modern physics and
astrophysics, as well as the non-small communities working in this field, a manual
for beginners, as well as a comprehensive reference for researchers, covering the
main techniques of X-ray and c-ray data reduction and analysis is missing in the
literature. In most cases, one has to refer to online material spread over the web, and
to rely on the help of advisors or colleagues.

The ambition of the present book is thus to try to provide a compact pedagogical
manual on X-ray and c-ray astronomy, where one can find all the necessary
materials to quickly start to work in the field, and, in particular, to study black holes
and the physical phenomena occurring in their strong gravity region. The book
starts with a brief review on black holes and the emission mechanisms responsible
for the generation of X-ray and c-ray radiation. Then we discuss the observational
facilities in X-ray and c-ray astronomy, and how they work. The last part of the
book is devoted to the discussion of X-ray and c-ray data reduction and analysis.
The book should provide the basic tools to be able to write a scientific paper with
the material obtained after the analysis of a source.

Shanghai, China
January 2020

Cosimo Bambi

v



Contents

1 Fundamental Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Cosimo Bambi and Sourabh Nampalliwar

2 Accreting Black Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Sourabh Nampalliwar and Cosimo Bambi

3 How to Detect X-Rays and Gamma-Rays from Space:
Optics and Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Valentina Fioretti and Andrea Bulgarelli

4 Past, Present, and Future X-Ray and Gamma-Ray Missions . . . . . . 119
Andrea Bulgarelli and Matteo Guainazzi

5 From Raw Data to Scientific Products: Images, Light Curves
and Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Jiachen Jiang and Dheeraj R. Pasham

6 Basics of Astrostatistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Vinay L. Kashyap

7 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
William Alston, Peter Boorman, Andrea Bulgarelli,
and Michael Parker

vii



Contributors

William Alston Institute of Astronomy, Cambridge, UK

Cosimo Bambi Department of Physics, Fudan University, Shanghai, China

Peter Boorman Astronomical Institute, Academy of Sciences, Prague, Czech
Republic;
Faculty of Physical Sciences and Engineering, Department of Physics &
Astronomy, University of Southampton, Southampton, UK

Andrea Bulgarelli INAF OAS Bologna, Bologna, Italy

Valentina Fioretti INAF OAS Bologna, Bologna, Italy

Matteo Guainazzi European Space Agency, ESTEC, Noordwijk, The Netherlands

Jiachen Jiang Department of Astronomy, Tsinghua Univerisity, Beijing, China

Vinay L. Kashyap Center for Astrophysics, Harvard & Smithsonian, Cambridge,
MA, USA

Sourabh Nampalliwar Theoretical Astrophysics, Eberhard-Karls Universität
Tübingen, Tübingen, Germany

Michael Parker European Space Agency (ESA), European Space Astronomy
Center (ESAC), Madrid, Spain

Dheeraj R. Pasham MIT Kavli Institute for Astrophysics and Space Research,
MIT, Cambridge, MA, USA

ix



Chapter 6
Basics of Astrostatistics

Vinay L. Kashyap

6.1 Introduction

The term Statistics is used to describe both compilations and mathematical descrip-
tions of data. The former may include summaries of the data, like the median weight
of newborn babies, variances in stock prices, amortization tables for mortgages, etc.
The latter describes connections across the data: either correlations (is cigarette smok-
ing injurious to health?) or dependencies (how injurious is it?); provide a framework
for making decisions (should you stop smoking?); and is necessary to understand the
processes that generate the data and the certainty with which we can draw actionable
conclusions. The former is related to the latter in the same way that astrometry is
relevant to astrophysics: it is necessary, but not sufficient. In this chapter, we will
focus on the latter aspect, and assume that the reader is familiar with the usual ways
of summarizing their data.

In astronomy, where most events are one-off, it is critical to understand how dif-
ferent a measurement could have been, to understand the spread, and prevent us from
over-interpreting an observation and fooling ourselves. Astrostatistics, in particular,
is the field dedicated to studying the mathematical underpinnings of astronomical
data, to obtain estimates and uncertainties on quantities useful for astrophysical
inference, while taking into account instrument sensitivities, random fluctuations,
the circumstances of the observations, and avoid the pitfalls of making incorrect
inferences. Importantly, it is used as a guide in asking the right question of the data
and to obtain the best possible answer.

For instance, consider two observations of two sources, one which yields 100
counts in 10ks, and one which yields 10 counts in 1ks. The estimated count rates
are 0.10±0.00316 and 0.10±0.01. If we were to ask which is the brighter source
(ignoring complications due to background), the answer will depend on howwell we
understand the data: if we assume the errors are well described by a Gaussian and
are symmetric, we would claim that no difference will be discerned with repeated
observations; if instead we account for the skew in the Poisson likelihood, then the

V. L. Kashyap (B)
Center for Astrophysics, Harvard & Smithsonian, 60 Garden Street,
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source with the shorter observation will be more likely to be brighter in more of the
repeated observations.

Knowing how the uncertainties are distributed gives us a powerful lever to obtain
better estimates of measurables that more precisely reflect the physics that generates
them. The important part to note here is that astrostatistics is not just about com-
puting means and variances: the mathematics of uncertainty characterization allows
us to detect sources, develop and fit models, compare competing models, group and
classify objects, etc.

The purpose of this chapter is to provide a framework for astronomers to under-
stand statistical issues that are relevant to astronomical analysis and place them in
context. In particular, we will describe the basic statistical tool-set needed for con-
temporary analysis of high-energy astronomical data. Thus, we will first discuss the
Poisson distribution, in the context of several others that are relevant, in Sect. 6.2.
Next, in Sect. 6.3, we will provide a guideline to how error bars and uncertainties are
evaluated, and howuncertainty intervals are set.Wewill also briefly discuss Bayesian
analysis in Sect. 6.3.2 in the context of uncertainty intervals. Then, in Sect. 6.4, we
will discuss the underpinnings of the fitting process, introducing the concept of like-
lihoods and parametric curve fitting. In Sect. 6.5 we will then discuss the basics of
decision making, via hypothesis tests, p-value thresholds, goodness-of-fit tests, and
model comparisons, and point out some important limitations in the process. Finally,
in Sect. 6.6, we will point the reader to resources for more in depth study.

6.2 Distributions

When an observable quantity is measured, it can be considered to be sampled from
amongst several possible values that it could take due to natural fluctuations. The
underlying set from which this value is sampled is called a distribution. Distribu-
tions put precise probabilities on obtaining a particular value in an experiment. For
example, when a fair coin is flipped, it can land on either the head or the tail with
equal probability. When that coin is flipped repeatedly (say 20 times), what are the
chances that it will land heads 10 times? 15 times? 20 times? The probability of these
occurrences are described by the Binomial distribution (see below).

Note that most useful distributions, whether defined over a continuous or discrete
variable, are invariably proper. That is, a distribution f (.) over a continuous variable
x or a discrete variable k is normalizable such that

∫

x
dx f (x) = 1 or

∑

k

f (k) = 1 .

In contrast, higher order moments like the mean
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E[x] =
∫

x
dx x f (x) or E[k] =

∑

k

k f (k) ,

variance

V [x] =
∫

x
dx x2 f (x) − E[x]2 or V [k] =

∑

k

k2 f (k) − E[k]2 ,

etc., are not necessarily defined.
In principle, there are an infinite number of possible distributions, limited in

their usefulness only by the application for which they are most suited for. There
are, however, a small number of distribution families that are often used in, or are
directly applicable to, astronomical analyses, and we describe their relevance briefly
below.

Uniform
The simplest of all distributions, it has a uniform probability of generating a number
between two specified values. It is supported over the entire real number line R,
but without loss of generality can be defined to be unity in the range x ∈ [0, 1].
Any arbitrary continuous range can be obtained by a translation and scaling linear
transformation,

U (x; a, b) = 1
b − a

a≤x≤b

= 0 otherwise ,

∀x, a, b ∈ R ,

E[x] = a + b
2

,

V [x] = 1
12

(b − a)2 . (6.1)

Sampling from it forms the first step in all numerical Monte Carlo methods, and
algorithms to obtain high-fidelity draws from it are widely used, in fields ranging
from cryptography to ray tracing. Most pseudorandom number generators in codes
used in astronomy analyses (everything from Matlab, IDL, Python, R, etc) uses the
Mersenne Twister method.1 It is not cryptographically secure, but it has a period of
21937 − 1 for 32-bit integers and is thus adequate for numerical simulation purposes.

Gaussian
Also called the Normal distribution, it is one of the most common distributions
encountered in descriptions of data. It is defined over the full real line, with mean
and variance the sole determining parameters, and all higher moments identically 0,

1Matsumoto 1997; http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html.

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
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N (x;µ, σ 2) = 1

σ
√
2π

e− (x−µ)2

2σ2 ,

∀x, µ, σ ∈ R ,

E[x] = µ ,

V [x] = σ 2 . (6.2)

The primary reason for its ubiquity is that it is the natural distribution that results for
summaries of data. This is a consequence of the Central Limit Theorem, which holds
for large sample sizes for well-behaved samples, i.e., for samples which are drawn
from distributions with well-defined means and variances. The Gaussian distribution
has several mathematical properties that make it useful in astronomical analyses:
(1) it is symmetric and defined over the full real line; (2) its log-form is parabolic,
which means first-order Taylor expansions are interpretable as being distributed as
Gaussians; (3) its Fourier transform is also Gaussian in form in frequency space; (4)
it is easily generalized to multiple dimensions; (5) it is the Mother wavelet for the
Mexican Hat wavelet; and (6) the product or convolution of two Gaussians is also a
Gaussian, all ofwhichmakes it a convenientway to characterize error bars. Figure6.3
(left) shows some examples of the Gaussian distribution, centered at µ = 0, but for
different values of σ . The area enclosed between±{1, 2, 3}σ is {0.683, 0.954, 0.997}
respectively for a one-dimensional Gaussian. The corresponding values for the 2-D
case are {0.393, 0.865, 0.989}.
Log-Normal
Astronomical data often cover a large dynamic range. For instance, stellar bolomet-
ric luminosities range from ≈10−3 L⊙ for cool dM9 dwarfs to >105 L⊙ for blue
supergiants. Most distributions are not optimized to represent such broad ranges of
data, and suitable distributions are best defined over the log scale. The log-Normal
serves this purpose, as it is essentially the Gaussian distribution, defined over the
transformed variable ln x ,

f (x;µ, σ 2) = 1

σ
√
2π

1
x
e− (lnx−µ)2

2σ2 ,

∀x ∈ R>0,∀µ, σ ∈ R ,

E[x] = eµ+
σ2
2 ,

V [x] = (eσ 2 − 1) e2µ+σ 2
. (6.3)

Note that despite the similarity to the Gaussian (the 1
x factor is absorbed in the

differential measure to form d ln x), the parameters are not as simply defined. The
mean has an additional correction term of σ 2/2, and the variance includes corrections
based on the center µ. Despite these complications, the log-Normal is often used to
model luminosity functions.

Binomial
This is often considered the baseline distribution, since it can be built up from first
principles as a combinatorics problem of selecting k objects out of a sample of N



6 Basics of Astrostatistics 207

0 10 20 30 40 50

0.
00

0.
05

0.
10

0.
15

x
0 10 20 30 40 50

0.
00

0.
05

0.
10

0.
15

x

Bi
no

m
(S

am
pl

e 
Si

ze
, p

ro
ba

bi
lit

y)

Bi
no

m
(S

am
pl

e 
Si

ze
, p

ro
ba

bi
lit

y)

Fig. 6.1 Left: Binomial distribution for p = 0.25, 0.5, 0.75 and sample size N = 50 (red, black,
blue respectively). Right: Binomial distribution for p = 0.5 and different sample sizes of N =
25, 50, 75 (red, black, blue respectively)

when the probability of picking it out of one is p,

Binom(k; N , p) = NCk pk(1 − p)N−k ,

∀k ∈ N0,∀p ∈ [0, 1] ,
E[k] = Np ,

V [k] = Np(1 − p) . (6.4)

Several other distributions can be constructed as asymptotic extensions (e.g., the form
of the Poisson is derived in the limit N → ∞ keeping the count rate fixed). Unlike
the Gaussian, it is defined only for whole numbers k, N ∈ N0, while p ∈ [0, 1]. It is
useful to describe problems where the distribution of the selection of one of a binary
outcome (heads or tails, 0 or 1) is being described. For instance, it can be used to
set the error bars on enclosed energy (p = EE) radii for point sources: for a source

with N events, the fractional error on the enclosed energy is
√

EE (1−EE)
N , which then

can be projected against the cumulative distribution function F(< rEE ) to obtain the
corresponding error on the radius rEE (note that this error is approximate, as it relies
on symmetry, thus making it invalid for EE ≈ 0, 1 and interpolation in F(< rEE ),
thus requiring large N ). There are also versions where more than one type of object
can be selected, called theMultinomial distribution. Figure6.1 shows some examples
of the Binomial distribution, demonstrating how the choices of p and N affect its
shape.
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Poisson
This describes the probability of observing k counts when a value λ is expected,2

Pois(k; λ) = λk

Γ (k + 1)
· e−λ ,

∀k ∈ N0,∀λ ∈ R≥0 ,

E[k] = λ ,

V [k] = λ . (6.5)

As such, it is the fundamental underlying distribution that is used to describe all
of high-energy photon counts data. As in the case of the Binomial distribution, the
Poisson is also defined over thewhole number line, k ∈ N0, and the governing param-
eter λ ≥ 0. Unlike the Gaussian, the range of the Poisson is bounded, and it is thus
strongly skewed as λ → 0. This skew has important ramifications for astronomical
analyses: best-fit model parameter estimates will be biased, and computed error bars
will be incorrect if the wrong distribution is assumed. Note that a feature of the Pois-
son distribution is that the variance is equal to the estimate; this is the origin of the√
N error typically used in counting statistics. An illustration of what the Poisson

distribution looks like for different values of λ is shown in Fig. 6.2, which bins the
data from an X-ray source known to be unvarying at different time bins; smaller
bins leads to a highly skewed distribution of counts, while large bins lead to a close
approximation to a Gaussian.

Gamma
The continuous variable form of the Poisson is the Gamma distribution. It has the
same mathematical form as the Poisson (the product of a power and an exponential),
but is defined over x ∈ R≥0, and is governed by two parameters (α,β) that control
its location and shape.

γ (x;α,β) = βα

Γ (α)
· xα−1 e−xβ ,

∀x,α,β ∈ R≥0 ,

E[x] = α

β
,

V [x] = α

β2
. (6.6)

It is often used as a so-called conjugate prior in Bayesian analyses that involve the
Poisson distribution. It is a highly flexible functional form, able to mimic a large

2Statisticians use Greek letters for variables that describe model parameters and Roman letters for
quantities that describe the data. In particular, they use λ as the symbol to represent brightness or
strength of a source. This is sometimes also called intensity, but always has units [count].
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Fig. 6.2 Illustrating the Poisson and Gamma distributions by comparison to a steady X-ray source.
The top panels show the light curves of counts in each bin for the isolated neutron star RXJ 1856.5-
3754 from a 20ks Chandra observation, made with different time bins: 0.1 s (left), 1 s (middle),
and 10s (right). The time range is set such that each panel has roughly similar number of bins
shown. The source is known to be steady over timescales of several years, and is thus a good
example of a constant source. The average value of the counts per time bin, computed over the
whole observation, is marked with a horizontal red line. In the bottom panel, the distribution of
the counts in the corresponding light curves is shown as the green diamonds. For comparison, a
Poisson distribution (Eq.6.5) constructed for the same model mean is shown as a red histogram, an
equivalent Gamma distribution (Eq.6.6) is shown as the blue curve, and a corresponding Gaussian
(Eq.6.2 is shown as the green curve. Note that the abscissa in the lower panels are used in two ways,
both for integer counts k (for the stepped histograms), as well as for a continuous variable x (for
the continuous curves)

variety of unimodal distributions encountered in astronomical data.3 It also surfaces
in several instances as special cases (e.g., see Chi-squared below). Notice that as
with the Gaussian, the parameters are determinable from the mean and variance of
an observed sample that obeys the γ -distribution, as α = E[x]2

V [x] and β = E[x]
V [x] . The

Gamma distribution is also illustrated in Fig. 6.2 as the blue curve overlaid on the
red histogram representing the equivalent Poisson distribution.

3In this, it is similar to the Weibull distribution, which has an 1
α xβ form in the exponential instead

of xβ.
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Chi-Squared
This is a special case of the γ distribution, with α = ν/2 and β = 1/2, where ν are
the degrees of freedom,

γ

(
χ2; ν

2
,
1
2

)
= 1

2ν/2Γ (k/2)
(χ2)ν/2−1e−χ2/2 ,

∀χ2 ∈ R≥0,∀ν ∈ Z+ ,

E[χ2] = ν ,

V [χ2] = 2ν , (6.7)

where χ2 ≥ 0 and ν ∈ Z. It is the solution to the question that asks, if ν independent
Gaussians are combined together, what is the probability that the sum of their squared
deviations, weighted by the reciprocal of their variances, add up to the given χ2.
This phrasing anticipates model fitting described below in Sect. 6.4, with χ2 and
(−2 × exponent) of theGaussian playing the role of theweighted squared deviations.

Student’s t
This is a versatile distribution that is encountered in several vastly different situations.
It is also called the Cauchy, or the Lorentzian, or the Beta-profile distribution, and is
characterized by tails that cover larger areas than the Gaussian (Fig. 6.3).

tν(x) =
Γ

(
ν+1
2

)
√

νπΓ (ν/2)

(
1+ x2

ν

)− ν+1
2

,

∀x ∈ R,∀ν ∈ Z+ ,

E[x] = 0 ν > 1 ,

= undefined ν≤1 ,

V [x] = ν

ν − 2
for ν > 2 ,

= undefined ν≤2 . (6.8)

Formally, it is derived as the ratio of a Normal and a
√

χ2 distribution. In a statistical
context, it describes the uncertainty with which the mean of a sample can be deter-
mined when the variance is also determined from the same sample; in that situation,
ν represents the size of the sample.

Pareto
One of the most common distributions encountered in astrophysics is the power-law,
which arises whenever a physical process operates over a large range of scales. In
such situations, when the physical process is essentially scale-free, or there is no
preferred scale, the energy in the system cascades such that the distribution looks
self-similar everywhere, and can be described as a functionwith a power-law indexα.
The statistical analogue of the power-law is the Pareto distribution, which is defined
such that it has a well-defined lower bound to prevent it from becoming improper,
i.e., so that the integral stays finite.
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Fig. 6.3 Comparing the Gaussian and tν distributions. Left: Normal distribution for µ = 0, σ =
1, 2, 4 (black, blue, red). Right: t distribution for ν = 1, 2, 7 (black, blue, red)

P(x;α, x0) = αxα
0 x−(α+1) ,

∀x0,α ∈ R>0,∀x > x0 ,

E[x] = αx0
α − 1

α > 1 ,

= undefined α≤1 ,

V [x] = x20α
(α − 1)2(α − 2)

α > 2 ,

= undefined α≤2 . (6.9)

6.2.1 Distributions Versus Functions

It is important to understand the difference between functions and distributions.
Even though distributions are defined using functional forms, they each represent
fundamentally different quantities. A function is a deterministic locus of points that
satisfy the mathematical form. In contrast, a distribution represents a sampling of
a variable conditioned on the defined parameters. Samples from distributions are
indicated with a special symbol “∼”, as e.g.,

X ∼ f (x; θ) .
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6.3 Error Bars

6.3.1 Propagation of Errors

One of the first things a researcher has to do with a measurement is to scale, shift,
and transform the signal that comes out of the detector to a form that is physically
relevant. A simple example is to count the photons registered in a certain time and
compute the count rate as the number of photons registered per second (see, e.g.,
the light curves shown in the top row of Fig. 6.2). We expect the counts to follow a
Poisson distribution (see above). How, then, can we use that information to place an
error bar on the count rate?

If the quantity of interest is distributed as a Gaussian, uncertainty intervals can be
propagated through any number of transformations g = f (x1, x2, .., xK ) using the
chain rule,

σ 2
g =

K∑

i=1

(
∂ f
∂xi

)2

σ 2
i . (6.10)

This expression is a consequence of doing a Taylor expansion of the Gaussian around
the mean and computing the variance of the difference, and ignoring terms o(x2) and
higher. Some common transformations are shown below:

g = constant · x ⇒ σg = constant · σx (errors scale)

g = ln x ⇒ σg = σx
x (fractional error)

g = 1
x

⇒ σg

g = σx
x (fractional error preserved)

g = x + y ⇒ σg =
√

σ 2
x + σ 2

y (add variances)

g = x
y

⇒
√

(
σx
x

)2 +
(

σy

y

)2
(add fractional variances) (6.11)

That is, a multiplication by a constant scales the error on the resultant value by the
same factor; a log-transformation assigns the fractional error to the new variable;
a reciprocal relation preserves the fractional error across the transformation; for an
additive combination of two independent variables the variances are added together;
and for the ratio of independent variables the fractional variances are added together.
In the count rate example we were considering above, a Poisson count N also has
variance N . If N is sufficiently large (say > 30), the Poisson distribution becomes
similar to the Gaussian (as in the third column of Fig. 6.2), and we can then set
σ =

√
N . The exposure time τ is usually measured with high precision, and if we

ignore the measurement uncertainty on it, it can be effectively treated as a constant.
Then, because rate = N

τ
, the error on the rate, σrate =

√
N

τ
. If this rate is then converted

to a flux at the telescope by dividingwith a (known) effective area factor Aeff and then
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to luminosity by multiplying by a distance modulus 4πD2, where D is the distance
to the source, and the log of the luminosity is computed as logL = log10

(
rate 4 π D2

τ Aeff

)
,

then the error on logL is, by the chain rule, σlogL = 1
ln(10)

σL
L = 0.4343√

N
.

This method of propagating errors assumes that the Gaussian distribution is
appropriate at every stage, and that the transformations in question are differen-
tiable, and that the variance is well-defined in all cases. These are highly restric-
tive assumptions. Note that they formally break down for the ratios in the exam-
ples shown in Eqs. 6.11 when the denominators approach zero. The estimates and
uncertainties for such ratios are unstable, and subject to large fluctuations; it is
for this reason that the fractional hardness ratio

(
Hard counts−Sof t counts
Hard counts+Sof t counts

)
and the

color (log (Sof t counts) − log (Hard counts)) are used extensively to track spec-
tral changes in preference to the simple ratio Sof t counts

Hard counts .

6.3.2 Digression: Frequentist Versus Bayesian Analysis

There are twomajor approaches in Statistics theory. The Frequentist viewpoint treats
the observed data as just one realization amongst an ensemble that is obtainable, with
the ultimate physical quantity that the data are describing to be immutable, i.e., that
there is one truth. The Bayesian viewpoint is that the data at hand are what are
available, and cannot be changed, and they predict a variety of plausible values for
the parameter, which are described via a distribution. Both approaches give the same
answers for the same setups, but expose different assumptions and work through
different pathways to get to the result. For astronomers,who tend to obtain one dataset
at a time, Bayesian analysis may seem a more natural approach. Nevertheless, it is
best to use whichever technique is best suited to the particular question being asked
of the data.

Bayesian analysis relies on probability calculus, and on conditional probabilities
in particular. The main axioms of probability theory are that

probability(A or B) = probability(A) and probability(B) less probability(A and B)

p(A + B) = p(A)+ p(B) − p(AB) (6.12)
probability(A and B) = probability(A given B) times probability(B)

p(AB) = p(A|B) · p(B)
≡ p(B|A) · p(A) (6.13)

where A, B, etc. are statements that can take truth values with probability p(). There
is an equivalent axiom that can be derived from the above, which states that the sum
of the probability of A and its negation A is 1, i.e.,

p(A)+ p(A) = 1 .
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The second axiom of Eq.6.13 describes conditional probability using the notation
A|B. It leads directly to Bayes’ Theorem,

p(A|B) = p(B|A) · p(A)
p(B)

. (6.14)

Despite the almost trivial simplicity of the Theorem, it is a powerful tool that
underlies probabilistic analysis. Its power comes from how the statements A, B, etc.
are interpreted. Consider the case where A represents a model with parameter θ ,
and B represents the data that the model seeks to describe. Then, Bayes’ Theorem
(Eq.6.14) becomes

p(θ |D) = p(D|θ) · p(θ)
p(D)

. (6.15)

The term p(θ) is called the prior probability of the model parameter, i.e., the range
of values it can be expected to have before the data are acquired. The term p(D|θ) is
called the Likelihood (it is sometimeswritten as L(θ |D)), and denotes the probability
that the data can be described with the particular model parameter. The term p(D)

in the denominator is called the evidence of the data, and acts as the normalization
factor for the probability, ensuring that the sum of the probabilities adds up to 1. The
term p(θ |D) is called the posterior probability of the model parameter θ , which is
an update to the prior probability after an observation is made.

As an example, let us consider a case where 10 counts are observed in a pixel
in an image. We may seek to evaluate the probabilities of the brightness values for
the source that produced this many counts. A priori, we do not know what θ can
be; but it is reasonable, for astronomical sources, that the brightness can cover a
large dynamic range, going several 100s of counts to small fractions of a count,
so we adopt p(θ) = 1

θ
as the prior. The likelihood is described by a Poisson dis-

tribution, p(D = 10|θ) = θ10 e−θ

Γ (11) . Specifically now, let us consider the case θ = 5.
For this value, p(θ = 5) = 0.2 and p(D = 10|θ = 5) = 0.018. We can evaluate the
numerator of Eq.6.15 similarly for several values of θ , and evaluate the integral∫ ∞
0 dθp(D = 10|θ)·p(θ) = 0.1, which defines the value of the denominator p(D)

since the probability that θ has some value between 0 and∞ is 1. Thus, the posterior
probability density at θ = 5 can be evaluated as p(θ = 5|D = 10) = 0.0018.

In a similar manner as above, complex problems can be handled by repeated
applications of Bayes’ Theorem, reducing a problem with several interconnected
variables into separated factors that can each be evaluated.

6.3.3 Uncertainty Intervals

An uncertainty interval can be thought of as a measure of the width of the distribu-
tion. Frequentist and Bayesian analyses approach this differently. In the Frequentist
paradigm, a confidence interval is defined by a process: a calculated interval can be
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expected to contain the true value a certain fraction of the times that an observation is
performed. In the Bayesian paradigm, a credible region is the range in the parameter
values which encloses a certain fraction of the area under the probability distribu-
tion. We will refer to either of these in general as uncertainty intervals, and use the
paradigm specific terms when referring to a particular case.

A Credible Interval is defined as the range [a, b] that corresponds to a specified
area

∫ x=b
x=a dx f (x) = c under the curve. It is possible to find multiple values of a and

b that lead to the same value of the integral. For instance, while 68% of the area under
a Gaussian N (0, σ 2) is enclosed within the interval [−1σ,+1σ ], the same fraction
is also enclosed between [−∞,+0.17σ ], between [−0.17σ,+∞], etc. In fact, there
are an infinite number of intervals which enclose 68% of the area of a Gaussian.
Thus, there is no unique instance of “a” credible interval, and some other factor
of importance must be stated. The degeneracy is typically broken by stating either
equal-tail (EQT) intervals, which sets [a, b] such that equal areas are left out at either
end of the support of the distribution, i.e.,

∫ x=a
x<a dx f (x) =

∫ x>b
x=b dx f x = 1−c

2 , or
using the highest posterior density (HPD) intervals, which enclose the all the highest
possible values of the probability density. An EQT is invariant even under non-linear
coordinate transformations, and an HPD, which always includes the mode of the
distribution, guarantees the shortest uncertainty interval by design (for unimodal
distributions; HPDs for multimodal distributions can be split into several segments).

Different techniques are used to estimate the uncertainties in the case of non-linear
weighted least-squares fitting. These methods rely on the magnitude of variation of
a particular statistic (often related to the likelihood), and are described below (see
Sect. 6.4.1.3).

6.4 Fitting

Typically, one has an astrophysical model that is a function of several variables
(aka parameters). The model is used to predict the incident flux, and is then further
modified by instrumental effects such as the effective area and spectral response to
be put into the same form as the data. The task is to determine which values of
the parameters is the best description of the data. This is usually done by finding
the extremum of a suitable metric. There are several choices we can make for the
metric. The absolute deviation of the model from the data is a popular choice, and is
also called the L1-norm. The sum of the squared of the deviations is also called the
L2-norm. The common example of the simple linear regression fit uses the L2 norm:
if there are pairs of data (xi , yi ), the sum squared deviation can be written as

L2 =
∑

i

(yi − m·xi − c)2 ,
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where m is the slope of the fitted straight line and c is its y-intercept. Setting
∂L2/∂m = ∂L2/∂c = 0 results in the well-known solutions for the slope and inter-
cept, m = cov(x,y)

V [x] , and c = E[y] − m·E[x].

6.4.1 χ2

While the above is an adequate solution for when the errors on xi are all identical (this
is called homoskedasticity), in typical astronomical data the errors vary considerably
amongst the xi (this is called heteroskedasticity). In such a case, it is advantageous to
use the sum of squared deviations inversely weighted by the variances, which leads
us to the familiar χ2 statistic, which can be written in a generalized form as

χ2 =
∑

i

(Datai − Modeli )2

Error2i
. (6.16)

Notice here that the χ2 value is simply the exponent of the Gaussian density; it
can in fact be written without loss of generality as

χ2 = −2
∑

i

ln N (xi ;µi , σ
2
i ) .

Furthermore, the Gaussian density is a measure of the likelihood of the data for
the specified model, and thus, minimizing the χ2 is equivalent to maximizing the
likelihood. This ensures that the optimal solution is found in the Gaussian regime,
since by definition the best-fit has the highest likelihood of explaining the data.
Thus, the χ2 is the appropriate statistic to use to obtain fits to data whose errors
are Normally distributed. This method of fitting has several useful properties: (1)
the fitting is done as L2 minimization, for which several well-established numerical
algorithms exist; (2) the quality of the fit can be estimated (see Sect. 6.4.1.2 below);
and (3) uncertainty ranges on the best-fit parameter estimates can be computed by
measuring the changes in χ2 over the parameter space (see Sect. 6.4.1.3).

6.4.1.1 Digression: Degrees of Freedom

Degrees of freedom is a loosely defined concept that gives a sense of the number of
independent quantities or variables needed to describe the system under considera-
tion. Its precise value is context dependent, and is influenced by the question being
addressed. As an example, when a model with m parameters is fit to a dataset with
N bins (which could be the number of spectral bins, or time bins in a light curve, or
pixels in an image), the relevant degrees of freedom ν = N − m. A fit is only possi-
ble if N > m, and the problem is overdetermined and the solution will be overfit if
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the reverse is true. In contrast, when the uncertainty interval of a single parameter is
being estimated by computing the change in χ2 from the best-fit at fixed parameter
values, the degrees of freedom is the number of parameters being held fixed. When
the standard deviation of a sample of size N is estimated, because it also requires
that the mean be computed from the sample beforehand, the degrees of freedom is
reduced by 1 to ν = N − 1, and the sum of the squared deviations from the mean is
divided by this factor rather than by N .

6.4.1.2 Goodness of Fit

The χ2 statistic has an additional useful property that the statistic obtained from an
ensemble of good fits is distributed as the χ2 distribution (Eq.6.7) with ν = N − m
degrees of freedom, where data size is N , and the model has m parameters that are
allowed to be free. Thus, when the observed χ2 statistic lies in the range ν ±

√
2ν,

that is an indication that the derived best-fit belongs to the set of good fits to the
data. Sometimes ν is divided into χ2 to form the so-called reduced χ2, and extreme

values of this, χ2

ν
≡χ2

ν ≫ 1+
√

2
ν
, are seen as an indication that the fit is not good.

However, there are several reasons that χ2
ν can be large, and being a bad fit is only

one of them; other possibilities include: defining χ2 with a different denominator;
underestimation of errors; not accounting for systematic errors; and applying it to
data not distributed as a Gaussian.

6.4.1.3 Error Bars on Parameters

The similarity of χ2 minimization to the Gaussian likelihood provides a means by
which uncertainties intervals on the best-fit parameter values can be determined. The
idea is that any change away from the best-fit values will lead to an increase in the
χ2 and a corresponding decrease in the likelihood. This change can be mapped to
the χ2

ν distribution, and thresholds can be identified where successively larger areas
under the distribution are included. Thus, to compute the 1σ confidence interval on
(say) the j th parameter, we will have to locate the value of the parameter θ j where
the integral of the distribution from χ2

min|θ j to +∞ equals 0.16 (that is, the central
portion of the distribution includes 68% of the area, leaving 32% outside, which
are split into equal 16% segments on either side of the distribution). Since there is
one variable that is being varied (θ j ), this corresponds to computing the appropriate
quantiles of χ2

ν=1. The 1σ bound is reached when ∆χ2 = χ2|θ j − χ2
best−fit = +1.

Similarly, the 90% bound is reached when ∆χ2 = +2.7 (a common choice for users
of XSPEC) and a 3σ equivalent bound when ∆χ2 = +9. When the error bounds
on several parameters n are being considered simultaneously, the threshold values
should be obtained using the integrated percentile values of the χ2

n distribution with n
degrees of freedom. Specifically, for the so-called banana plots in 2-D, ∆χ2 = +4.6
for a 90% bound.
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6.4.1.4 χ2 Variants

There are several variants of the χ2 statistic, which mainly differ in how the variance
in the denominator is defined. These include using the Gehrels estimate [9] of the
Poisson 84th percentile as the Gaussian 1σ equivalent, or the Primini method of
using the model estimate from the previous iteration [14]. It is important to note that
while such variants are often adequate as a tool to obtain the best fit solution, they
cannot be used to compute error bars as described above if the computed statistic is
not a χ2 distribution (Eq.6.16).

6.4.2 cstat

While the χ2 is an appropriate statistic to minimize for Gaussian distributed data,
using it in other situations will lead to biased estimation of parameters. This is the
case in the vast majority of high-energy datasets, which are based on photon counts,
and are governed by the Poisson distribution (see Eq. 6.5). Note that even though a
Gaussian is an adequate approximation to a Poisson for large N , parameter estimates
will remain biased. It is therefore necessary to use the Poisson likelihood in places
where counts data are involved.

Because there is a significant amount of software and theoreticalmethods available
that is built upon χ2 based fitting, it is advantageous to cast the Poisson likelihood
in the same form. This is the origin of the cstat statistic,

cstat = −2
∑

i

ln Pois(Di ,Mi )

= −2
∑

i

[Di lnMi − Mi − lnΓ (Di + 1)]

→ −2
∑

i

[Di lnMi − Mi − (Di ln Di − Di )]

=⇒ 2
∑

i

[(Mi − Di )+ Di · (ln Di − lnMi )] , (6.17)

where Di are the counts in bin i and Mi are the predicted model intensities in units
of [counts], and the Γ (.) factor is expanded using Stirling’s approximation.

In the asymptotic limit of large datasets, the cstat is distributed as the χ2

distribution, so all the techniques used to determine error bars and goodness of fit
can be applied. Even though such cases are rare, this is still a useful result, because
using cstat eliminates the bias in the parameters that results when the wrong
distribution is used. In the low counts case, which is more common, a full description
of the expected distribution of cstat is not yet available. However, recent work by
J. Kaastra [12] has brought forth a useful approximation where the expected value
Cµ and the variance C2

σ of the cstat for the given model intensities {Mi } can
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be estimated. Thus, if we know what value of cstat is expected for the best-fit
model intensities {M̂i }, we can compare it to the observed value cstatbest−fit, and
evaluate how many standard deviations away it is from the expected value. If, say,
cstatbest−fit > Cµ + 3Cσ , or cstatbest−fit < Cµ − 3Cσ , then it can be inferred
that the model fit is improbable at the <0.3% level.

6.5 Hypothesis Tests and Model Comparison

Obtaining best-fit parameters and error bars on them is often insufficient. In many
instances, astronomers must decide amongst several competing theories. A decision
must be made to choose one hypothesis or model over another, identify a model that
works well, or eliminate a model that does not. This is the realm of hypothesis testing
and model comparison.

In comparison to estimation problems, testing is fraught with misinterpretation. It
is necessary to understand both what a comparison means and what it does not. The
underlying cause of much of the confusion is the so-called p-value. We will discuss
the p-value and its use in Null-Hypothesis significance tests in Sect. 6.5.1, and then
discuss some errors that emerge as a consequence of their use. We will suggest some
schemes to work around these issues.

6.5.1 p-Values and Hypothesis Testing

Two crucial concepts underlie the mechanism of hypothesis testing:

p-Value
In any distribution, the area under it over a range starting from a particular value,
and extending to the end of the domain over which the distribution is defined, is the
p-value. As an example, the area under a Gaussian N (0, 12) ranging from the +1σ
point to +∞ represents p = 0.16. Similarly, the area from +3σ to +∞ represents
p = 0.003. Often, the problem is reversed such that the point that corresponds to a
specified p-value is of interest, and is used as a threshold for detection. For a given
distribution f (S),

p(Sc) =
∫

S>S
dS f (S) , (6.18)

with a summation replacing the integral for discrete distributions. The p-value rep-
resents the probability that a chance fluctuation results in observed values of S > Sc.

Null Distribution
In order to be able to say that a given distribution is different, or preferred, we
must first specify a distribution that it should be different from. This is a default
distribution, which we would expect to see if there were no signal in the data. It is
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also sometimes called the “Null Model”, or the “Null Hypothesis”, and is denoted
with the symbol H0, in contrast to the alternate, interesting hypothesis or model
that is tested, H1. For example, if we were interested in testing whether a coin was
biased, the null distribution would be the Binomial with the probability of heads
and tails being equal, B(k; N , 0.5). In the cstat goodness-of-fit check described
above (Sect. 6.4.2), the null distribution is that distribution of cstat statistic values
one would obtain in repeated experiments if the best-fit model were indeed a good
representation, i.e., N (cstat;Cµ,C2

σ ).
A typical hypothesis test is carried out by first defining a statistic, S, that sum-

marizes the model and the data. This could be the number of heads in repeated coin
tosses, or the χ2, or the cstat, etc. A null distribution f0(S) is then constructed,
and a pthreshold value is set, corresponding to a critical value Sc that will be used
in decision making. Note that it is important to set the threshold before the analysis
takes place, in order to guard against wishful thinking playing a role in the subsequent
analysis. Typically, statisticians use p = 0.05 as a standard choice of threshold. Note
that this corresponds to a chance fluctuation of 1 in 20 that the Null distribution can
generate values beyond the stated threshold. Astronomers have historically tended
to use stricter thresholds, typically set at 3σ , corresponding to p = 0.003.

Next, the same statistic of interest S′ is computed for the alternate model, and is
compared against Sc. If S′ > Sc, this is taken as evidence that H1 is preferred over H0

at significance pthreshold. This is often described as “rejecting the Null”. If S′ ≤ Sc,
then it is considered that there is no evidence to prefer H1 over H0 at significance
pthreshold.

Note that the former condition does not guarantee that H1 is true, nor does the
latter condition constitute proof that H0 is true. Null hypothesis tests can only reject
the null, as in, the measured statistic S′ is deep in the tail of the null distribution, and
hence is unlikely to have originated from it. But it is not proof that the Null is “false”.
Nor is it the case that if the Null cannot be rejected then it is “true”. The results of
such tests must therefore be interpreted with care. There are difficulties that arise
both when the data quality is poor as well as when it is good. We will discuss the
problems that arise at weak signals in Sect. 6.5.2 below. Counter-intuitively, when
the signal is strong, the Null distribution is often exposed as being inapplicable,
either due to uncorrected systematic errors which become non-ignorable relative to
statistical fluctuations, or due to model approximations which fail to account for
real-world complexities. This will lead to almost all tests rejecting the Null. This is
the reason why high-counts low-resolution spectra which are fit with models with
χ2/ν ≫ 1 are often published in the literature.

6.5.2 Threshold Based Errors

As described above, statistical decisions are made by appealing to how much of the
area of a distribution falls beyond a previously set threshold. While this mechanism
leads to precision in how a result is described, it is important to note that the result so
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obtained may be inaccurate in several ways. The art of specifying thresholds is often
one of trading off the different errors that arise due to the inevitable fluctuations that
arise with any measurement and inference.

Type I Errors
The area of a distribution α =

∫
dS p(S > S∗), representing the probability that

samplings of the statistic S can have values larger than S∗, is the probability of
obtaining false positives from the Null distribution, and is called the Type I error. It
can be thought of as an occurrence rate, signifying the fraction of times that a false
detection is obtained when samples {S} drawn from p(S) exceed S∗. It is funda-
mentally equivalent to the p-value at the threshold. When the p-value is sufficiently
small, it is interpreted as being so far in the tail of the Null distribution that it is
unlikely to be a draw from it, and thus cause for the rejection of the Null hypothesis.
As emphasized above, it behooves us to be careful about what this means exactly:
it does not mean that the Null is false, only that the probability of observing such
a signal is <α, and thus cause to consider alternative explanations. It is illustrated
in the upper panel of Fig. 6.4 as the shaded region to the right of the vertical line
representing the threshold.

Type II Errors
In contrast to a false positive, it is possible that there truly exists a signal whose
distribution has area 1 − β below the threshold (i.e., it has p = β). Then, with prob-
ability 1 − β, the observed signal will fail to reject the Null, and the signal will be
deemed to be not detected. This is called a false negative, or the Type II error. It is
essentially the mirror of the Type I error, in that it represents the probability that a

Fig. 6.4 Illustrating Type I and Type II errors [13]. The upper panel shows the example of a Null
distribution arising, e.g., from a background, along with the Type I error α representing the area of
the curve beyond the threshold S∗. The lower panel shows the example of an alternate distribution,
e.g., resulting from a source, along with the Type II error 1 − β representing the fraction of the
distribution that would remain below the threshold
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draw from an alternate distribution is classified as indistinguishable from that from
the Null distribution. It is illustrated in the bottom panel of Fig. 6.4 as the shaded
region to the left of the threshold. The p value in this case is also called the statistical
power of a test that uses as its threshold S∗. The higher the power, the better the test is
at finding the signal; but note that there is a trade-off, in that the lower false negative
rate would be naturally accompanied by a higher false positive rate.

Upper Limits
The combination of Type I and Type II errors also leads to a statistically rigorous
definition of an upper limit. A typical problem encountered in astronomy is the case
where a source is not detected, and we seek to establish the limiting brightness it
could have beyond which it would have been detected. Datasets with such points
are usually called ‘censored’, and can be dealt with in a non-parametric fashion
using Survival Analysis (see works by E.Feigelson and coauthors [7, 11]). But the
statistical description of an upper limit is more subtle. It is worth pointing out that
defining an uncertainty interval on the source intensity does not provide a solution to
this problem: as discussed above, an uncertainty interval precisely defines the bounds
on a parameter for a specified area under the distribution, but cannot be defined in
a unique manner. Consider an uncertainty interval defined with the lower bound set
at the same point as the corresponding p-value. The upper bound is then (if the
distribution is defined over R) at+∞, and while that would be a true statement, it is
not a useful one. However, the power of the detection test provides a way to define a
useful upper limit [13].Consider the pair of distributions inFig. 6.4,where the statistic
of interest S = N , the number of counts: the distribution in the upper panel represents
the Null, or the distribution of the background, and the bottom panel represents the
source. In a given observation, the background distribution is generally well known,
and can be considered to be fixed. In contrast, the brightness of an undetected source
is not known at all. When the true brightness is small, the probability that the source
will not be detected, 1 − β, will be large, and vice versa. If, then, in addition to the
detection threshold α, we require that an existing source should also be detected with
probability β∗, the upper limit to the source brightness is that value which achieves
a power of β∗. A source with higher brightness would be detected more often than
β∗, and vice versa. Note that when β∗ = 0.5 the source brightness coincides with
the nominal brightness value of the threshold (if the distributions are not skewed),
allowing for an easy interpretation. Thus, specifying an upper limit requires two
significance levels, and both the Type I and Type II errors are needed.

As an example, consider a case where NC = 20 photons are counted in a region
that is believed to contain a source along with a background. Suppose further that
NB = 100 counts are collected in a source-free area ρ = 10 times the area of the
source region. The expected background under the source region is λ̂B = NB/ρ =
10, and the estimated source strength λ̂S = NC − NB/ρ = 10, and the nominal
propagated uncertainty (see Sect. 6.3) in the estimate is σ̂S =

√
NC + NB/ρ2≈4.6.

The source would be considered undetected by either the signal-to-noise criterion
( λ̂S
σ̂S

< 3) or considering the p-value of the Poisson likelihood for the background
intensity, p = ∑∞

k=20 Pois(k; λB) = 0.00345 (whereas the detection threshold set
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at the usual 3σ -equivalent would be p ≤ α = 0.003). Computing an error bar on
the source brightness λS is not helpful in this case, partly because there is no
guarantee that the source exists, and partly because there is no way to uniquely
set an uncertainty interval. For instance, computing λ̂S±N σ̂S gives [5.4, 14.6] and
[−3.7, 23.7] for N = 1 and N = 3 respectively. The negative lower bound is an
indication that the Gaussian approximation breaks down. Computing the Bayesian
posterior distribution p(λS|NC , NB, ρ) (see, e.g., [21]), we can compute an equal-
tail 68% interval of [6.7, 15.9] ([0.5, 27.7] at 99.7%), or one-sided 68% intervals of
[0, 13.2] or [8.9,+∞) ([0, 26.3] or [0.9,+∞) at 99.7%). This is clearly untenable,
and we must instead compute the upper limit of the detectable source brightness,
i.e., determine that λS at which we can be reasonably certain that the threshold
criterion is set. This latter criterion is the power of the test, β (see above). Just
as one has to decide the level at which error bars are reported (1σ , 2σ , etc.) a
choice must be made as to what value of β to report. For the sake of simplicity,
we choose β = 0.5, as signifying the case when the source has a 50% chance of
being detected at the given threshold α. This is equivalent to computing when the
counts in the source region exceed the criterion for detection, i.e., when the hypoth-
esis that the counts in the source region are entirely drawn from the background can
be rejected. The threshold for this is achieved if ≥21 counts are observed, and the
upper limit is set by computing the smallest value of λS where the probability of
obtaining 21 or more counts exceeds β = 0.5, which can be calculated numerically
asλS < UL(NB = 100, ρ = 10,α = 0.003,β = 0.5) = 11.6. If the source strength
were greater than that, the source would be detected more than half the time it is
observed. Notice that the number of counts observed in the source region, NC , is
irrelevant to this calculation because the detection threshold is set based only on the
background distribution.

False Discovery Rate
A relatively recent innovation in statistical methods is the False Discovery Rate
(FDR), which combines aspects of both Type I and Type II errors. It represents the
fraction of those tests where the Null is rejected where it is falsely rejected. This is
useful to devise tests where the sample from the alternate is small compared to the
sample from the Null. Tests that control for FDR (i.e., ensure small values of FDR)
account for large disparities in sample sizes. An example of how it can be used is
illustrated by the wavdetect algorithm in CIAO that is used to detect sources in
X-ray images. The threshold for detection is set by requiring a wavelet correlation
strength that would result in one false detection on average over the entire image,
i.e., an S∗ corresponding to a p ≡α = 1

Npixel
, where Npixel are the number of pixels

in the image, and also the number of independent hypothesis tests that are carried
out within the image.

Type M Errors
One of the consequences of a threshold-based selection of alternatives is that when
the signal, also called the effect size, is small, the times when the Null is rejected
also require large fluctuations in the signal. These fluctuations can be so strong
that the estimated signal strength is strongly biased, and leads to clearly incorrect
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inferences. This is illustrated in the left two panels of Fig. 6.5. Consider a signal
described by H1 : N (x;µ, 12), compared to a Null distribution H0 : N (x; 0, 12).
Let us consider tests where the Null is rejected at thresholds corresponding to p =
{0.1, 0.05, 0.01} (equivalent to σ > {+1.6,+2,+2.6}; and represented with red,
blue, and green colors respectively). That is, if a sample is drawn from H1, and it
exceeds the threshold set based on H0, the hypothesis that the draw is from H0 can
be rejected. The middle panel shows what happens when the thresholds are applied
to a true signal of various strengths, µ ∈ [0, 4] (the case of µ = 0.1 is illustrated in
the left panel). The instances when the Null is rejected all require samples at large p-
values in the alternate distribution, and the resulting sample estimates are invariably
larger than the true signal. This effect is well known in astronomy, and is encountered
in all cases where automated source detection is used to detect weak sources.4

Type S Errors
Just as in the case of one-sided thresholding that can lead to a signal being detected
with thewrongmagnitude, two-sided thresholds can lead to an evenmore spectacular
failure of the test,with the signal beingdetectedwith thewrong sign.This is illustrated
in the left and right panels of Fig. 6.5. As above, consider a signal described by
H1 : N (µ, 12), compared to a Null distribution H0 : N (0, 12). Let us consider tests
where the observed signal exceeds a threshold on either side of zero, with |σ | >
{1.6, 2, 2, 6}. The area under H1 that exceeds these deviations are shown in the left
panel, shaded in red, blue, and green respectively. This is a situation one might
encounter if searching for emission and absorption lines in a spectrum. The right
panel shows the fraction of observations where the Null would be rejected with
the signal strength estimate being negative. As the figure demonstrates, there is a
non-zero chance that a weak emission line source can produce a “detection” of an
absorption line.

The basic takeaway from this discussion is that statistical tests that decide between
alternatives should not be treated as black boxes. The results of the tests should
be considered in the context of the different ways that they could go wrong, and
thresholds should be set to minimize these errors. Most importantly, decisions of
choice should be made as late as possible in the process in order to avoid introducing
unaccounted and uncalibrated biases into subsequent analyses.

6.5.3 Likelihood Ratio Tests

It is often the case that two distinct models must be compared and one chosen as
being a better descriptor of the data. We can use the machinery of hypothesis tests
to do this (see Sect. 6.5.1 above). The optimal statistic would be one that quantifies

4This bias is sometimes called the Eddington Bias, though strictly speaking the Eddington Bias
also includes the effects of population characteristics. That is, the measured source strengths are
affected by both the Type M bias as well as there being more weaker sources that have upward
fluctuations in the measurements than stronger sources that have downward fluctuations.
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Fig. 6.5 Illustrating Type M and Type S errors. Left: Example distribution N (x; 0.1, 12) of a
small effect size compared to the Null distribution N (x; 0, 12), showing how it exceeds different
thresholds set on the Null at the two-sided±90% (red),±95% (blue), and±99% (green) two-sided
levels. Middle: The expected value of samples drawn from the alternate distribution with different
effect sizes that exceed the thresholds at p = 0.9 (red), p = 0.95 (blue), and p = 0.99 (green).
Right: The fraction of samples drawn from the alternate distribution with different effect sizes that
are detected with the opposite sign at the same thresholds as in the left figure. Notice that even at a
signal strength of 1.5, there is a probability of 10−4 that an observation will return a fluctuation of
the wrong sign at p < 0.005

howwell a model describes the data, and thus should be dependent on the likelihood.
The natural quantity to consider is the ratio of the likelihoods R of the two models,

R = L(Θ̂1)

L(Θ̂2)
, (6.19)

where L(Θ̂k) represents the likelihood of model k at the best-fit parameter values
Θ̂k . Note that Θk may be comprised of different parameters, and indeed different
numbers of parameters, for different k. Often, the negative of twice the natural log
of this quantity,

LR = −2 ln R (6.20)

is used instead, as a guard against significant differences being hidden near the lower
bound as R → 0. In the Gaussian regime, LR is also easily computed as the χ2 (see
Sect. 6.4.1). Conventionally, the numerator comes from the simpler model, and the
denominator from the more complex model, so small values of R or large values of
LR are interpreted as favoring the complex model.

Likelihood Ratio Tests (LRTs) work by considering how the distribution of the
likelihoods are affected by the quality of the model fit. If there is nothing to choose
between the two models, then the R and LR distributions should be consistent with
that expected from statistical fluctuations. If one or the other model is superior, then
R will be expected to differ from 1, and LR from 0. But since there is no explicit
Null distribution to compare with, these distributions are not known in all cases and
must often be calibrated using Monte Carlo methods. However, in the limit of large
data sizes, LR is distributed as a χ2 distribution with degrees of freedom equal to the
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difference in dimensionality between the parameter spaces of the two models. This
is known as Wilks’ Theorem, and it is invoked whenever a decision must be made to
add a component to a model or not. For instance, if an optically thin thermal emission
model is being used to fit to a coronal spectrum, and a choice must be made whether
to thaw the metallicity or not, the value of LR is calculated for models with the
metallicity frozen and thawed, and this value is compared against the χ2

1 distribution
to decide whether the p-value is small enough that the more complex model, with
the metallicity thawed, is required. Note that, as discussed above in Sect. 6.5.2, if the
p-value is not small, this does not forbid the metallicity being thawed, but merely
states that the simpler model is good enough.

It is important to understand the regime of applicability of Wilks’ Theorem. As
alluded to above, it is asymptotically valid for large data sets, as the size of the sample
→ ∞. There are two additional conditions that are crucial: first, the simpler model
must be nested within the complex model, and second, the simpler model should
not fall on the edge of the parameter space spanned by the complex model. The first
condition precludes direct comparisons between, e.g., power-law and blackbody
spectral models. The second indicates that the existence of emission (or absorption)
lines cannot be searched for in this manner, because the simpler model (one with
no emission line) is identical to the boundary of the complex model where line
intensity is zero. In such cases, LR is not well described by the χ2 distribution,
and the computed p-value could be either an underestimate or an overestimate. This
situation was explored in depth by the CHASC AstroStatistics group [22]. They
prescribed a general method based on Monte Carlo simulations to calibrate the LRT
when Wilks’ Theorem is inapplicable:

1. First compute best-fit parameter values and error distributions p(Θ1,2|data) for
the two models;

2. From the best-fit parameter values, compute LRobserved;
3. Draw N sets of samples of Θ1, the simpler model’s parameters, from this distri-

bution;
4. Create N simulated data sets from the sample parameter values;
5. Fit both the models to the simulated data sets, and compute the LR for each

simulated sample;
6. Construct the distribution fsim(LR) as the sampling distribution for when the

simpler model is the correct descriptor of the data;
7. Compare LRobserved against fsim(LR), and compute the approximate p-value.

6.6 Further Reading

In this chapter, we have described the foundational statistics necessary to understand
and analyze high-energy astronomy data. Astrostatistics is an old field, arguably dat-
ing back to Pierre Laplace and certainly to Arthur Eddington, but is also an active
field of research where new methods and techniques are being developed to handle
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the numerous problems that are encountered. Here we have focused specifically on
concepts dealing with errors and uncertainties. The literature is vast and constantly
growing. The papers, books, and monographs that were used, or implicitly or explic-
itly referred to here, are listed below, along with several others that can point the
reader to more details and a greater depth of understanding. This list is not designed
to be complete, but is rather expected to be representative.
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