Al-Assisted Super-Resolution and De-Noising for XMM-Newton EPIC-pn

Sam Sweere Remote trainee at the XMM SOC, ESAC, ESA

Supervisors: Ivan Valtchanov, Maggie Lieu, Eva Verdugo, Antónia Vojtekova, Maria Santos-Lieo

Research Objective

- Increase the scientific exploratory value of XMM-Newton data
 - Decrease noise
 - Improve spatial resolution

XMM

Chandra (0.5 arcsec FWHM PSF)

Source ID: SNR 292.0+01.8

XMM-Newton

- Over 20 years in operation, vast amount of data
- X-ray telescope
- Multi-shell grazing incidence mirrors

XMM EPIC-PN

- Most sensitive sensor
- 0.5 2.0 keV energy range

Traditional Approaches

- Richardson–Lucy deconvolution
- Not applicable to XMM because of changing PSF
- Machine Learning (AI)

Source: Galaxy Morphologies Revealed with Subaru HSC and Super-Resolution Techniques I: Major Merger Fractions of L UV ~ 3 - 15 L * UV Dropout Galaxies at z ~ 4 - 7 *; Takatoshi Shibuya, et. al.

AI Image Super-Resolution

Low Resolution Input

Image source: ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks, Xintao Wang et. al.

AI Image Super-Resolution

Low Resolution Input (1x) Generated Super-Resolution (4x)

Ground Truth

State of the Art Super-Resolution

Low Resolution Input (1x)

Generated Super-Resolution (4x)

Ground-Truth

XMM Super-Resolution

XMM (6 arcsec FWHM PSF) Chandra (0.5 arcsec FWHM PSF)

How do you build a AI Super-Resolution model?

Intuition, how would a human do it?

Intuition, how would a human do it?

How to build a Denoising/SR AI Model

- Model Architecture
- Loss Functions
- Training Data
- Evaluation Metrics

How to build a Denoising/SR AI Model

- Model Architecture
- Loss Functions
- Training Data
- Evaluation Metrics

Deep Neural Networks

Forward Pass

Deep Neural Networks

Update the Weights

784

Convolutions

Learned Convolutions

Upsampling

Deep Convolutional Neural Network

Image to Image Networks

Residual in Residual Dense Block (RRDB)

Adapted from: ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks, Xintao Wang et. al.

RRDB Denoise and Super-Resolution Models

Denoise Model

Super-Resolution Model

How to build a Denoising/SR AI Model

- Model Architecture
- Loss Functions
- Training Data
- Evaluation Metrics

Loss metrics

- Pixel loss
 - L1 (Least Absolute Deviations)
 - Poisson
- Adversarial loss

Pixel Loss

• L1 (Least Absolute Deviations):

$$L_1 = \frac{1}{N} \sum_{i=0}^{N} |y_i - \hat{y}_i|$$
$$Poisson = \frac{1}{N} \sum_{i=0}^{N} (\hat{y}_i - y_i \log(\hat{y}_i))$$

L1 Loss vs Poisson Loss

L1 Loss:

Poisson Loss:

Generative Adversarial Network (GAN)

L1 Loss vs Adversarial Loss

L1 Loss:

L1 + Adversarial Loss:

Low Resolution (1x)

Generated (2x)

How to build a Denoising/SR AI Model

- Model Architecture
- Loss Functions
- Training Data
- Evaluation Metrics

Training Data

- XMM cannot zoom
- Chandra has a higher spatial resolution, however:
 - Different image characteristics
 - Only a few hundred good pairs

XMM Simulation

- Create training pairs with increased psf and spatial resolution
- Increase data on rare astronomical structures
- SIXTE X-ray simulation software (Bamberg University)
- IllustrisTNG simulation input

XMM Simulation: Comparison

XMM Simulation: PSF and Spatial Resolution

2x

1x

Data Scaling

No scaling:

How to build a Denoising/SR AI Model

- Model Architecture
- Loss Functions
- Training Data
- Evaluation Metrics

Evaluation Metrics

- Visually compare with Chandra
- Least Absolute Deviations (L1)
- Peak Signal to Noise Ratio (PSNR)
- Structural Similarity Index (SSIM)

Peak Signal to Noise Ratio (PSNR)

• Measure of ratio between maximum possible value and background noise

$$MSE = \frac{1}{N} \sum_{i=0}^{N} (y_i - \hat{y}_i)^2$$
$$PSNR = 10 \cdot \log_{10} \left(\frac{MAX_I^2}{MSE}\right)$$

Structural Similarity Index (SSIM)

Luminance:	$l(\mathbf{x}, \mathbf{y}) = \frac{2\mu_x \mu_y + C_1}{\mu_x^2 + \mu_y^2 + C_1}$
Contrast:	$c(\mathbf{x}, \mathbf{y}) = \frac{2\sigma_x \sigma_y + C_2}{\sigma_x^2 + \sigma_y^2 + C_2}$
Structure:	$s(\mathbf{x}, \mathbf{y}) = \frac{\sigma_{xy} + C_3}{\sigma_x \sigma_y + C_3}.$

$$SSIM(\mathbf{x}, \mathbf{y}) = [l(\mathbf{x}, \mathbf{y})]^{\alpha} \cdot [c(\mathbf{x}, \mathbf{y})]^{\beta} \cdot [s(\mathbf{x}, \mathbf{y})]^{\gamma}$$

Structural Similarity Index (SSIM)

Challenges: Hallucinations

- Super-Resolution ill-posed problem
- Statistically validate the results
- Limited scope
- AI-Assisted

Low Resolution (1x)

Generated (2x)

Target (2x)

Preliminary Results

Low Resolution Input (1x, 20ks) Generated (1x, 100ks)

Target (1x, 100ks)

Low Resolution Input (1x, 20ks) Generated (1x, 100ks)

Target (1x, 100ks)

Low Resolution Input (1x, 20ks) Generated (1x, 100ks)

Target (1x, 100ks)

Low Resolution Input (1x, 20ks) Generated (1x, 100ks)

Target (1x, 100ks)

Preliminary Results Denoise: Real Data

Low Resolution Input (1x, 20ks) Generated (1x, 100ks)

Source: Vela SNR

Preliminary Results SR: Simulated Data

Low Resolution Input (1x, 20ks) Generated (2x, 100ks)

Target (2x, 100ks)

Preliminary Results SR: Simulated Data

Low Resolution Input (1x, 20ks)

Generated (2x, 100ks)

Target (2x, 100ks)

Preliminary Results: Denoise vs SR

Denoised (1x):

Super-Resolution (2x):

(20ks)

Target (100ks)

Preliminary Results SR: Real Data

Low Resolution Input (1x, 20ks) Generated (2x, 100ks)

Source: 1E 1841-045

Preliminary Results SR: Real Data

Low Resolution Input (1x, 20ks) Generated (2x, 100ks)

Chandra

Preliminary Results SR: Real Data

Low Resolution Input (1x, 20ks) Generated (2x, 100ks)

Source: NGC 4666

Summary

- Denoising/Super-Resolution model for XMM-Newton Epic-PN
- Improved visual clarity
- Find contaminating agn sources
- Follow-up observations/further analysis
- Long training, short inference

Next Steps

- Fine-Tuning on real XMM data
- Testing multiple loss functions
- More extensive model evaluation (on simulated and real data)

Any questions?

Architecture in Detail

			LeakvReLU-36	[-1, 16, 416, 416]	0			
Laver (type)	Output Shape	Param #	Conv2d-37	[-1, 16, 416, 416]	6.928	DenseResidualBlock-73	[-1, 16, 416, 416]	0
=======================================			= LeakvReLU-38	[-1, 16, 416, 416]	0	Conv2d-74	[-1, 16, 416, 416]	2,320
Conv2d-1 [-1, 16, 4	16, 416] 304		Conv2d-39	[-1, 16, 416, 416]	9.232	LeakyReLU-75	[-1, 16, 416, 416]	0
Conv2d-2 [-1, 16, 4	16, 416] 2,320		LeakyReLU-40	[-1, 16, 416, 416]	0	Conv2d-76	[-1, 16, 416, 416]	4,624
LeakvReLU-3	[-1, 16, 416, 416]	0	Conv2d-41	[-1, 16, 416, 416]	11.536	LeakyReLU-77	[-1, 16, 416, 416]	0
Conv2d-4 [-1, 16, 4	16, 416] 4.624			[_, _,,]		Conv2d-78	[-1, 16, 416, 416]	6,928
LeakvReLU-5	[-1, 16, 416, 416]	0	DenseResidualBlock-42	[-1, 16, 416, 416]	0	LeakyReLU-79	[-1, 16, 416, 416]	0
Conv2d-6 [-1, 16, 4	16.416] 6.928		Conv2d-43	[-1, 16, 416, 416]	2.320	Conv2d-80	[-1, 16, 416, 416]	9,232
LeakvReLU-7	[-1, 16, 416, 416]	0	LeakvReLU-44	[-1, 16, 416, 416]	0	LeakyReLU-81	[-1, 16, 416, 416]	0
Conv2d-8 [-1, 16, 4	16, 416] 9,232		Conv2d-45	[-1, 16, 416, 416]	4.624	Conv2d-82	[-1, 16, 416, 416]	11,536
LeakvReLU-9	[-1, 16, 416, 416]	0	LeakyReLU-46	[-1, 16, 416, 416]	0	DenseResidualBlock-83	[-1, 16, 416, 416]	0
Conv2d-10	[-1, 16, 416, 416]	11.536	Conv2d-47	[-1, 16, 416, 416]	6.928	Conv2d-84	[-1, 16, 416, 416]	2,320
DenseResidualBlock-11	[-1, 16, 416, 416]	0	LeakyReLU-48	[-1, 16, 416, 416]	0	LeakyReLU-85	[-1, 16, 416, 416]	0
Conv2d-12	[-1, 16, 416, 416]	2.320	Conv2d-49	[-1, 16, 416, 416]	9.232	Conv2d-86	[-1, 16, 416, 416]	4,624
LeakvReLU-13	[-1, 16, 416, 416]	0	LeakvReLU-50	[-1, 16, 416, 416]	0	LeakyReLU-87	[-1, 16, 416, 416]	0
Conv2d-14	[-1, 16, 416, 416]	4.624	Conv2d-51	[-1, 16, 416, 416]	11.536	Conv2d-88	[-1, 16, 416, 416]	6,928
LeakvReLU-15	[-1, 16, 416, 416]	0	DenseResidualBlock-52	[-1, 16, 416, 416]	0	LeakyReLU-89	[-1, 16, 416, 416]	0
Conv2d-16	[-1, 16, 416, 416]	6.928	Conv2d-53	[-1, 16, 416, 416]	2.320	Conv2d-90	[-1, 16, 416, 416]	9,232
LeakyReLU-17	[-1, 16, 416, 416]	0	LeakyReLU-54	[-1, 16, 416, 416]	0	LeakyReLU-91	[-1, 16, 416, 416]	0
Conv2d-18	[-1, 16, 416, 416]	9,232	Conv2d-55	[-1, 16, 416, 416]	4,624	Conv2d-92	[-1, 16, 416, 416]	11,536
LeakyReLU-19	[-1, 16, 416, 416]	0	LeakyReLU-56	[-1, 16, 416, 416]	0	DenseResidualBlock-93	[-1, 16, 416, 416]	0
Conv2d-20	[-1, 16, 416, 416]	11,536	Conv2d-57	[-1, 16, 416, 416]	6,928	ResidualInResidualDenseBlock-94	[-1, 16, 416, 416]	0
DenseResidualBlock-21	[-1, 16, 416, 416]	0	LeakyReLU-58	[-1, 16, 416, 416]	0	Conv2d-95	[-1, 16, 416, 416]	2,320
Conv2d-22	[-1, 16, 416, 416]	2,320	Conv2d-59	[-1, 16, 416, 416]	9,232	Conv2d-96	[-1, 64, 416, 416]	9,280
LeakyReLU-23	[-1, 16, 416, 416]	0	LeakyReLU-60	[-1, 16, 416, 416]	0	LeakyReLU-97	[-1, 64, 416, 416]	0
Conv2d-24	[-1, 16, 416, 416]	4,624	Conv2d-61	[-1, 16, 416, 416]	11,536	PixelShuffle-98	[-1, 16, 832, 832]	0
LeakyReLU-25	[-1, 16, 416, 416]	0	DenseResidualBlock-62	[-1, 16, 416, 416]	0	Conv2d-99	[-1, 16, 832, 832]	2,320
Conv2d-26	[-1, 16, 416, 416]	6,928	ResidualInResidualDenseBlock-63	[-1, 16, 416, 416]	0	LeakyReLU-100	[-1, 16, 832, 832]	0
LeakyReLU-27	[-1, 16, 416, 416]	0	Conv2d-64	[-1, 16, 416, 416]	2,320	Conv2d-101	[-1, 1, 832, 832]	145
Conv2d-28	[-1, 16, 416, 416]	9,232	LeakyReLU-65	[-1, 16, 416, 416]	0	GeneratorRRDB-102 [-1, 1, 832	,832] 0	
LeakyReLU-29	[-1, 16, 416, 416]	0	Conv2d-66	[-1, 16, 416, 416]	4,624			
Conv2d-30	[-1, 16, 416, 416]	11,536	LeakyReLU-67	[-1, 16, 416, 416]	0	===		
DenseResidualBlock-31 [-1, 16, 416, 416] 0		0	Conv2d-68	[-1, 16, 416, 416]	6,928	Total params: 326,129		
ResidualInResidualDenseBlock-32	[-1, 16, 416, 416]	0	LeakyReLU-69	[-1, 16, 416, 416]	0	Trainable params: 326,129		
Conv2d-33	[-1, 16, 416, 416]	2,320	Conv2d-70	[-1, 16, 416, 416]	9,232	Non-trainable params: 0		
LeakyReLU-34	[-1, 16, 416, 416]	0	LeakyReLU-71	[-1, 16, 416, 416]	0			
Conv2d-35	[-1, 16, 416, 416]	4,624	Conv2d-72	[-1, 16, 416, 416]	11,536			

Potential Problems: Hallucinations

- Statistically validate the results
- Limited scope
- AI-Assisted

Low Resolution Input (1x)

Generated Super-Resolution (4x)

Ground-Truth

AGN De-Blending

Low Resolution Input (1x)

Generated Super-Resolution (2x)

Target